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1. Introduction

Manufacturing imperfections and tight tolerances in photonic crystal (PC) structures present
great challenge on the road of transferring this promising technology into the domain of com-
mercial applications. Much work has been done to study an impact of imperfections on the
performance of PCs [1-17]. It was established quite generally that small randomness in PC
geometry and/or material constants leads to an overall reduction in a band gap size, as well
as an increased back scattering and radiation loss, while stronger randomness can lead to ap-
pearance of localized impurity states. In the majority of theoretical studies various simplified
models of randomness are assumed. Such models are typically chosen for simplicity of parame-
terization of a particular type of randomness, or because some modelling methods could only
handle certain types of geometries. In 1D PC multilayers [1, 2] one typically considers disorder
in the thickness and value of a dielectric constant of individual layers. In 2D planar PCs and
microstructured fibers [3-13] one frequently considers random displacement of features from
an underlying ideal lattice, disorder in a feature size (radius of a hole, for example), disorder
in the refractive index, distortion of feature shapes (ellipticity), as well as roughness of walls
[14, 15] which is sometimes modelled by protrusions of some average characteristic hight and
width. In 3D PCs derived from lithographical techniques and opals [16, 17] additional imper-
fections are stacking faults, and surface roughness. In all these calculations disorder parameters
are scanned from small to large and conclusions are drawn about their relative impacts. Propa-
gation parameters can be sensitive functions of disorder parameters. For example, power in the
back scattered modes from wall roughness in a planar TIR waveguide scales quadratically with
roughness hight (perturbation theory) and is a very sensitive function of a roughness correlation
length. Thus, for a rigorous comparison of theoretical estimates with experimental observations
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one has to be precise about the types and statistical importance of realistic imperfections.
The goal of this paper is to understand which are the statistical parameters of importance

when describing disorder in PC lattices, and then to characterize such parameters quantitatively
by analyzing high resolution experimental images of 2D planar slab PCs. We find that three
intuitive sets of parameters are necessary to create a comprehensive statistical model of PC im-
perfections. First set of parameters describe coarse properties of features such as radius, ellip-
ticity and other low angular momenta components in a feature shape. Such coarse variations of
a shape can be either deliberately designed or result from an imperfect manufacturing process.
Another set of parameters describe roughness of feature edges on a nanometer scale, that is wall
roughness, which is ultimately determined by the random physical processes of electron scat-
tering in a resist, resist development and etching. A final set of parameters describes deviations
of feature centers from ideal periodic lattice.

When interpreting Scanning Electron Microscopy (SEM) images one has to always keep in
mind that SEM image is a convolution of an imperfect fabrication (see Appendix) and an im-
perfect SEM capture. Reconstruction of actual dielectric profiles from SEM images can be a
very non-trivial task far beyond the scope of this paper. In the following we apply our statis-
tical analysis to SEM images assuming that they represent true dielectric profiles. Developed
statistical formulation is, however, general and can be applied to any images.

The paper in organized as follows. We first characterize coarse variations and wall roughness
in individual features from which the periodic lattice is constructed. Next, we characterize an
imperfect lattice formed by individual features. Finally, we evaluate errors in deduced statistical
parameters due to finite image resolution. We demonstrate our approach by analyzing various
high resolution images of 2D planar PCs manufactured by e-beam lithography and detailed in
the following publications: InP/InGaAsP/InP [22, 23], Air/InP membranes [24, 25], Air/Si
membranes [26, 27], and SiO2/Nb2O5/SiO2 [28].

2. Statistical description of feature edges

In this section we introduce a parameterization model to characterize feature shapes. It is a
general property of statistical fitting for the error to decrease with the number of parameters in-
cluded in the model. The challenge is to define as small as possible set of parameters and yet to
capture physically significant variations in a feature shape. Here we present a ”common-sense”
criterion to decide on a minimal number of parameters required to decompose the shape into
a regular curve plus edge roughness noise. In what follows we adapt statistical methods devel-
oped for characterization of rheology of complex surfaces [18, 19, 20] to describe fabrication
imperfections in planar PCs.

2.1. Fitting a single feature edge

First, object recognition algorithm [21] (see discussion in section 4) is used to extract circular
features and their edges Fig. 1(a). We start with images of highest resolution having few features
an example of which is Fig. 1, [22] with resolution of 0.46nm. Edge of each feature is then fitted
to extract coordinates of its center, radius, ellipticity and higher order Fourier components in
the edge shape Fig. 1(b). Particularly, we define an edge objective function

QM
edge =

1
Nedge

Nedge

∑
i=1

(rM
f it(θi)− redge(θi))2, (1)

where redge(θi) is a distance from a feature center (X0,Y0) to an edge point (Xi,Yi),

rM
f it(θi) = R0 +

M

∑
m=2

(AM
m Sin(mθi)+ BM

mCos(mθi)). (2)
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Feature radius in (2) is an m = 0 term, implicit m = 1 terms correspond to the feature center
coordinates (X0,Y0), while m = 2 expansion coefficients in (2) define feature ellipticity as δ el =√

(AM
2 )2 +(BM

2 )2 with an angle of a major axis defined by cos(2θel) = BM
2 /δel . For a given M

there are (1+ 2M) fit parameters. We fit these parameters by minimizing an objective function
(1) (finding zeros of its derivatives) using standard multidimensional Newton method, with a

root mean square (RMS) of a fit error defined as σ(M) =
√

QM
edge. In what follows M ≥ 1,

where for M = 1 only the feature radius and coordinates of its center are fitted.
When more Fourier components are used in a fit, fit error σ(M) monotonically decreases,

and the change in the individual fit coefficients becomes smaller than sub-nanometer image
resolution for even modest values of M < 10. Thus, for example, for a single hole in Fig. 1

M R0(nm) X0(nm) Y0(nm) δel(nm) θel(Deg) σ(M)(nm)
1 123.17 342.89 467.88 2.97
2 123.06 342.88 467.83 2.09 12.62 2.58
8 123.00 342.76 467.66 2.17 12.48 1.46
20 122.99 342.74 467.67 2.16 12.48 1.03

Note that, in general, assumption that feature edge redge(θi) can be fitted with a single valued
analytical curve rM

f it(θ ) might not be true on a small enough scale (in a particular case of
Fig. 1(c) this scale is below 2nm) where rough feature edge is fractal-like. For all the analyzed
pictures we find that analytical form (2) is applicable on a larger than a nanometer scale.

If there are n = [1,N f ], Nf > 1 features in the image each containing N n
edge edge points, their

shapes are first fitted individually. Then, all the relevant parameters and correlation functions
are averaged over the features. For example, if R n

0, σ 2
n (M), [C,Γ,S]Mn (λ ) are the radius, variance

and correlation functions of a feature n, then their averaged counterparts are defined as

R = Rav ± δRav Rav = 1
Nf

∑
Nf
n=1 Rn

0 δR2
av = 1

Nf
∑

Nf
n=1(R

n
0 −Rav)2 (3)

σ2(M) =
Nf

∑
n=1

Nn
edgeσ2

n (M)/
Nf

∑
n=1

Nn
edge (4)

[C,Γ,S]M(λ ) =
1

Nf

Nf

∑
n=1

[C,Γ,S]Mn (λ ). (5)

2.2. Coarse parameters defining feature edges

The goal of this section is to define coarse parameters that characterize feature edges “globally”
such as radius, ellipticity, quadruple contribution, etc. and to establish their relative relevance.
Particularly, we consider statistics of deviations of feature edges from the corresponding smooth
fits when only a small number of low angular components are included in a fit. We define
random variable describing the fit error as

δ M
r = rn,M

f it (θi)− rn
edge(θi), (6)

where n = [1,Nf ], i = [1,Nn
edge]. Note that < δ M

r >= 0 as it is proportional to the derivative of

(1) with respect to a feature radius. Variance of δ M
r is given by (4). In what follows, we find

that for large enough values of M distribution of the remaining edge roughness δ M
r can always

be fitted by a Gaussian probability density distribution

P(δ M
r ) =

1√
2πσ(M)

exp− (δ M
r )2

2σ 2(M)
. (7)
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Fig. 1. (a) Image of a hole together with a detected edge. (b) Shape of a rugged edge is
fitted with Fourier series in θ . Smooth curve is an M = 1 circle fit. (c) On a scale < 2nm
hole edge can not be represented by a single valued analytical function rMf it(θ ). (d) Edge
roughness is self-similar on very different scales suggesting fractal description.

In Figs. 2(a,b) we analyze an image with resolution 0.86nm of a PC lattice [22] where di-
rect e-beam writing was used and circular features were coded as polygons with 12 sides. In
Fig. 2(a) probability density distribution (PDD) of δ M

r is presented as a function of the num-
ber of angular momenta components M in a fit. We observe that image data (solid curves)
and Gaussian distribution (dotted curves) with mean 0 and variance σ 2(M) defined by (4)
match very well for all M ≥ 1, indicating that error of a fit is random and normally distrib-
uted. As the number of angular components M in a fit increases RMS of δ M

r becomes smaller
Fig.2(b). For M > 1 we observe a slow decrease of fit error RMS with the number of angular
momenta components, suggesting that there is no simple coarse description of a feature shape
(such as ellipticity), and that higher order angular components contribute substantially. Sim-
plest statistical model of a feature edge for this image can be defined in terms of an average
radius of a circle R = 124.68± 1.76nm and a RMS deviation of an edge from such a circle
σ(1) = 3.09nm. One can also specify an averaged over features ellipticity and any number of
other higher order angular components in an effort to provide a more complete statistical model
of a feature edge. Thus, for example, if ellipticity is included in a fit, statistical model of coarse
parameters defining feature edges will be specified by an average radius of an underlying circle
R = 124.68±1.76nm, feature ellipticity δel = 2.64±1.17nm, direction of an ellipse major axis
θel = 18±36o, and a RMS deviation of an edge from an elliptical fit σ(2) = 2.32nm. Note that
averaged over features ellipticity has a large deviation from its mean, as well as an ill-defined
direction of an ellipse major axis, thus signifying that in this system ellipticity is not a clearly
identifiable property of the features, but rather a part of an edge roughness. Frequently, when
ellipticity and other low order angular components in a feature shape are not deliberate (as in
Fig.2(a,b)), their contributions are more natural to account for in terms of statistical properties
of an edge roughness (see next section), rather than through individual coarse parameters.

In Figs. 2(c,d) we analyze an image with resolution 2.45nm of a PC lattice [26] where a
pattern of elliptical features of graded radii was written to form a central vertical waveguide. In
Fig. 2(c) we present probability density distribution (PDD) of δ M

r as a function of the number of
angular momenta components M included in a fit. We observe that image data (solid curves) and
Gaussian distribution (dotted curves) with mean 0 and variance σ 2(M) defined by (4) match
well for M ≥ 2 indicating that after including ellipticity, the error of a fit is mostly random
and normally distributed. From Fig. 2(d) it is clear that for this structure ellipticity and to a
lesser extent quadruple contributions are important when describing feature shapes. That is,
from Fig. 2(d) we observe that inclusion of ellipticity M = 2 reduces fit error by a factor of
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Fig. 2. (a,c)Probability density distribution of fit error for different number of angular mo-
menta components M in a fit. (b) RMS of fit error decreases slowly as the number of angular
momenta components M in a fit increases, suggesting that there is no simple coarse descrip-
tion of a feature shape. (c) RMS of fit error decreases dramatically when ellipticity M = 2
of a feature is included in a fit, suggesting ellipticity as a dominant coarse parameter.

4, inclusion of M = 3 does not change fit error substantially, while inclusion of a quadruple
M = 4 reduces the error further by almost a factor of 2. As the number of angular components
in a fit increases beyond M = 4 we observe a slow decrease (power law as established later)
of RMS of fit error. Statistical model of coarse parameters defining feature edges can, thus, be
specified by an average radius of an underlying circle R = 178.46±7.82nm, feature ellipticity
δel = 22.11±1.87nm, direction of an ellipse major axis θ el = 87.3±1.5o, and a RMS deviation
of an edge from an elliptical fit σ(2) = 3.42nm. Note that averaged over features ellipticity has
a very small deviation from its mean, and a well-defined direction of an ellipse major axis, thus
signifying that in this system ellipticity is an intrinsic property of the features.

In general, relevance of coarse parameters can be judged from dependence of a fit error on
the number of included angular components M. Typically, we observe that coarse parameters
corresponding to the first several angular components M ≤ 10 are of major importance, and their
inclusion leads to a considerable reduction in the fit error (Fig. 2(d), 1 ≤ M ≤ 4). Inclusion of
higher order moments leads to a slow decrease of the fit error (Fig. 2(b), M > 1 ; Fig. 2(d),
M > 4) signifying an onset of noise-like edge roughness. After differentiating coarse variations
from noise-like edge roughness we can now complete statistical description of feature edges by
specifying the parameters of edge roughness.

2.3. Characterization of edge roughness

Model of disorder or roughness requires a model for the statistics of the correlation functions.
While simple analytical forms of the correlation functions, such as exponential or Gaussian, are
frequently used due to their integrability, we aim to derive the proper statistical forms directly
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from analysis of the images. Introduction of fractal dimensions allows us to develop a ”family”
of possible statistical distribution functions to describe roughness of features in PC lattices.

The most straightforward way of describing feature edge roughness is by considering statis-
tical properties of a fit error function, which for a feature n is defined as

δ M
n (θi) = rn,M

f it (θi)− rn
edge(θi), (8)

where n = [1,Nf ], i = [1,Nn
edge]. Values of δ M

n (θ ) for θ �= θi are interpolated. In our studies we
used “nearest neighbor”,“linear”, and “cubic” interpolation schemes with almost identical final
values of statistical parameters. While interpolation of roughness, in general, is not trivial, in
our case on a several pixel scale feature edges are continuous and relatively smooth curves as
they correspond to physical boundaries, thus allowing us to perform interpolation in a consistent
way. In what follows, for a feature n we consider interpolated values δ M

n (θ ) on a uniform mesh
θ = [0,2π−2π/Nn

edge] with Nn
edge points, which allows a straightforward use of FFT transforms.

We now consider spectral and fractal properties of roughness, which present an alternative
description to the angular momenta parameter approach of the preceding section. Fractal curves
are scale-invariant structures, having a similar shape independent of the scale of observation. In
practice, fractal stability should cover at least two decades in order to be unambiguously identi-
fied [20]. In the case of 2D PCs, even for the images with the highest sub-nanometer resolution,
self-similar behavior of edge roughness extended only for a maximum of two decades in spatial
wavelength. Nevertheless, fractal methodology seems to be useful for our purposes as fractal
exponents inferred from spectral and fractal analysis are consistent with each other.

To introduce fractal dimension we consider Lipschitz function f (θ ) having the property

| f (θ + ε)− f (θ )| ∝ εH ,ε → 0, (9)

where exponent H is called Lipschitz-Holder or Hurst exponent. When H = 0, f (θ ) is discon-
tinuous, while if H = 1, f (θ ) is differentiable. For 0 < H < 1, function f (θ ) is continuous but
not differentiable and is known as fractal.

In order to perform a fractal analysis a “height to height” correlation function is introduced.
For individual features it is defined as

CM
n (λ ) =< (δ M

n (θ + λ/Rn
0)− δ M

n (θ ))2 >θ=
1

2π

∫ 2π

0
dθ (δ M

n (θ + λ/Rn
0)− δ M

n (θ ))2. (10)

Assuming that δ M
n (θ ) is a fractal curve with Hurst exponent H, from definition (10) it follows

that when λ → 0, CM
n (λ ) ∝ λ 2H . By explicit squaring of an integrand in (10) and after minor

manipulations we write
CM

n (λ ) = 2(σ 2
n (M)−ΓM

n (λ )), (11)

where autocorrelation function is defined as

ΓM
n (λ ) =< δ M

n (θ + λ/Rn
0)δ

M
n (θ ) >θ − < δ M

n (θ ) >2
θ . (12)

For large enough values of λ that exceed noise correlation length λ > λ M
nc , ΓM

n (λ ) → 0, and
consequently, CM

n (λ ) → 2σ 2
n (M). In summary, asymptotics of spectral functions are

CM
n (λ )λ→0 ∝ λ 2H ; CM

n (λ )λ>λ M
nc
→ 2σ 2

n (M)
ΓM

n (λ )λ>λ M
nc
→ 0 ; (σ 2

n (M)−ΓM
n (λ ))λ→0 ∝ λ 2H . (13)

We find that for all the images of 2D PCs analyzed the following parameterizations (consistent
with asymptotics (13)) of functions CM

n (λ ) and ΓM
n (λ ) can be used to describe statistics of

noise-like edge deviation from a smooth fit

CM
n (λ ) = 2σ 2

n (M)(1− exp(−(λ/λ M
nc)

2H))
ΓM

n (λ ) = σ2
n (M)exp(−(λ/λ M

nc )
2H) . (14)
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Fig. 3. (a) “Height to height” correlation function and (b) auto-correlation function of an
edge deviation from smooth fits with M angular components.

These parameterizations work especially well when λ ∼< λ M
nc , while for λ ∼> λ M

nc oscillating
features persist due to aliasing effects. Note, from their definitions on a periodic domain
[C,Γ](λ ) = [C,Γ](−λ ) = [C,Γ](2πRn

0 − λ ), therefore we will only consider 0 ≤ λ ≤ πRn
0.

Moreover, for asymptotics (13) to hold correlation length of fit error has to be λ M
nc � πRn

0.
In Fig. 3(a) “height to height” correlation function of an edge deviation from a smooth fit with

M angular components is presented as a function of a spatial wavelength λ . From (13) it follows
that we can extract Hurst exponent of edge roughness by fitting a straight line to C M

n (λ ) plotted
on a log-log scale when λ ∼< λ M

nc . For wavelengths larger than correlation wavelength λ ∼> λ M
nc ,

CM
n (λ ) approaches a constant value. To get a reliable fit of Hurst exponent one typically needs

fractal behavior to persist over several decades of λ . In all the high resolution images that
we analyzed, fractal behavior persisted over one to two decades, thus making determination of
Hurst exponents from scaling of CM

n (λ ) somewhat imprecise. Thus, for example, from Fig. 3(a)
Hurst exponent for M = 1 curve is H = 0.5 when 2nm < λ < 20nm interval is considered,
while H = 0.43 when curve is fitted over the 2nm < λ < 90nm interval. The upper value of this
interval, however exceeds correlation length λ 1

c = 35nm and the fit underestimates the value
of a Hurst exponent. As we pointed out earlier, on a smallest scale 0.46nm < λ < 2nm our
description of an edge as a single valued curve of θ is not valid any longer (see Fig. 1(c)) and
this region can not be used in a fit. Note, that Hurst exponent of the remaining roughness is
almost constant for the values M = (1,2,4,8) somewhat decreasing from H = 0.5 to H = 0.45
for larger M’s. Correlation length can be determined from Fig. 3(a) using parameterization (14)
from which it follows that CM

n (λ M
nc ) = 2σ 2

n (M)(e−1)/e. Thus, for M = 1,2,4,8 the values of
correlation lengths are λ M

nc = 35nm,22nm,11.2nm,6.4nm. We notice that λ M
nc is a decreasing

function of the number M of angular components in a fit.
In Fig. 3(b) auto-correlation function of edge deviation from a smooth fit with M angu-

lar components is presented as a function of spatial wavelength λ . Correlation length can
be also determined from Fig. 3(b) using parameterization (14) from which it follows that
ΓM

n (λ M
nc ) = σ2

n (M)/e. Both “height to height” and autocorrelation functions give very similar
values of correlation lengths. To demonstrate that we plot in dotted lines parameterizations of
autocorrelation function (14) with H = 0.43,0.5, and correlation lengths deduced from asymp-
totics of “height to height” correlation function, and observe a good fit. Remaining oscillatory
features for λ � λ M

nc are due to aliasing effectss.
An alternative way of extracting Hurst exponents of a fractal data is using spectral techniques.

First, we use a small number of angular components M to fit feature center coordinates X n
0 ,Y n

0
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and radius Rn
0 by minimizing edge objective function (1). These parameters converge rapidly

as M increases, and we found that M = 8 gave a reliable fit for all the analyzed images. Given
feature center coordinates and a radius we consider deviation δ 1

n (θ ) of an edge from a circle,
interpolate it onto a uniform grid with the same number of N n

edge points as in a discretized image
of an edge θ = (0 : 2π/Nn

edge : 2π(1−1/Nn
edge), and use Fourier representation (2)

δ 1
n (θ ) = rn

edge(θ )−Rn
0 =

Nn
edge

∑
m=2

(AmSin(mθ )+ BmCos(mθ )), (15)

where coefficients Am and Bm can now be efficiently computed using standard FFT. Substituting
expansion (15) into (12) we get the following expression of the autocorrelation function

Γ1
n(λ ) =

1
2

Nn
edge

∑
m=2

(A2
m + B2

m)cos(m
λ
Rn

0
). (16)

Next, we define power spectral density function S 1
n(λm) of edge deviation from a circle as

S1
n(λm) =

1
2πRn

0

∫ 2πRn
0

0
dλ̃ Γ1

n(λ̃ )exp(−i
2π
λm

λ̃ ) =
1
4
(A2

m + B2
m), (17)

where λm = 2πRn
0/m. Alternatively, using parameterization (14) and performing integration

(17) we arrive to the following scaling relation

S1
n(λm) =

1
4
(A2

m + B2
m)|λm→0 ∝ λ 1+2H

m , (18)

from which one can extract Hurst exponent by plotting S n(λm) versus λm on a log-log scale.
Another spectral method that can be used to find Hurst exponent of a fractal data involves

plotting on a log-log scale RMS of edge deviation from a smooth fit σ n(M) as a function of
the number of angular components M in a fit (same plot as Fig.2(b,d) but for all the values of
M = (2 : Nn

edge)). In principle, to calculate σn(M) we have to first solve minimization problem
(1) that includes (1+ 2M) fit parameters, which for even moderate values of M > 10 becomes
time consuming. A considerably faster way to evaluate σ n(M) even for large M is to assume
that coefficients AM

m ,BM
m in expansion (2) are independent of M. Then, in the same way as in

calculating power spectral density we first find all the expansion coefficients in (15) using FFT.
Then, δ M

n (θ ) can be expressed via expansion coefficients (2) as

δ M
n (θ ) =

Nn
edge

∑
m=M+1

(AmSin(mθ )+ BmCos(mθ )). (19)

Taking into account scaling (18) we find that for M large enough the following holds

σ2
n (M) =< (δ M

n (θ ))2 >θ=
1
2

Nn
edge

∑
m=M+1

(A2
m + B2

m) ∝ M−H . (20)

Finally, when several features are present in the image we extract Hurst exponents from the
averaged statistical functions (4).

In solid blue lines in Fig. 4(a,b) we present power spectral density and RMS of fit error for
the same PC as in Fig. 1(a). Spectral density in Fig. 4(a) can be well fitted by a straight line
over 2 decades starting from the largest length scale justifying our earlier finding that features
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Fig. 4. (a) Power spectral density (blue). Linear fit is over 2 decades starting from the largest
length scale. (b) RMS of a fit error (blue). Linear fit spans the lowest angular momenta
starting with M = 1. (c) Power spectral density (blue). Linear fit is over 1 decade in the
interval 30nm ∼> λ ∼> 200nm (d) RMS of a fit error (blue). Linear fit is in the range 4 < M ∼<
40. In red are the statistical functions of a noise level due to finite resolution of an image.

in this PC can be characterized simply by an average radius and remaining roughness around
a circular fit. Because only one feature is considered in this image the data is somewhat noisy
and a range of Hurst exponents HS = 0.45− 0.6 is possible. RMS of fit error in Fig. 4(b) can
be fitted by a straight line starting from the lowest angular momentum M = 1 all the way to
M = 300 with a Hurst exponent Hσ = 0.45. In solid red lines we present spectral functions of
estimated discretization noise due to finite image resolution (for more discussion see section 4).
In solid blue lines in Fig. 4(c,d) we present power spectral density and RMS of fit error for the
same PC as in Fig. 2(c). Power spectral density in Fig. 4(c) can be well fitted by a straight
line over 1 decade in the interval 30nm ∼< λ ∼< 200nm giving an estimate of the Hurst exponent
HS = 0.3. RMS of fit error in Fig. 4(d) can be fitted by a straight line for angular momenta
M > 4 all the way to M = 40 with a Hurst exponent Hσ = 0.28. As it was established earlier,
ellipticity and a quadruple component are important contributions in the shape of the features,
which is also clearly visible from Fig. 2(d), where power dependence of a spectral function is
clearly observed only for M > 4.

Following discussions of this section we now present in Tables 1,2 several parameterizations
of features in PCs considered in Figs. 1(a), 2(c). Parameters R av, δel , θel , Am, Bm - the radius of
an underlying circle, ellipticity and other higher order moments of importance, are the coarse
parameters of feature shapes averaged over features, while σ(M), λ M

c , HC,S,σ describe statistical
properties of the remaining roughness (edge deviation from a coarse fit).

3. Statistical description of feature lattices

In this section, we investigate variations in the feature positions from an ideal periodic lattice.
In Fig. 5(a) we present an image with resolution 5.54nm containing a PC lattice of 437 holes
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Rav = 123(nm)
σ(1)(nm) λ 1

c (nm) HC HS Hσ
2.96 35 0.43−0.5 0.45−0.6 0.45

Table 1. Parameterization of features in Fig. 1(a), InP/InGaAsP/InP [22].

Rav(nm) δel(nm) θel(o) A3(nm) B3(nm) A4(nm) B4(nm)
178.5±7.8 22.1±1.9 87.3±1.5 0.6±1.1 −0.8±1.1 −0.5±0.9 3.6±0.9

σ(4)(nm) λ 4
c (nm) HS Hσ

1.67 19.1 0.3 0.28

Table 2. Parameterization of features in Fig. 2(c), Air/Si membranes [26].
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Fig. 5. (a)PC lattice of holes with 2 missing rows. Vertices of a fitted perfectly periodic
underlying lattice are shows as white dots. (b)PDDs of hole center deviations from the
vertices of a perfect lattice along 2 principal directions (solids) together with Gaussian
fits (dotted lines): perpendicular to the waveguide σ1 (blue), and parallel to the waveguide
σ2 (red). (c) RMS deviations σ1,2 (along 2 principle directions) of hole centers from an
underlying lattice against the number of features in a fit. Features in a fit are included one
by one, row by row starting from the upper left corner of an image.

and a waveguide made of two rows of missing holes [22]. At first, coordinates of the hole
centers r̄n

0 = (Xn
0 ,Y n

0 ) are found by minimizing objective function (2) for various values of M.
It was found that statistics of deviations of the hole centers from an underlying perfect lattice is
not sensitive to a particular choice of M, and in what follows we choose M = 3. Parameters of
an underlying perfect lattice are then found by minimizing lattice objective function

Qlat =
1

Nf

Nf

∑
n=1

(r̄n
0 − jn

1ā1 − jn
2ā2)2, (21)

where ā1,2 are the basis vectors of an underlying perfect lattice, and j n
1,2 are the integer lattice

coordinates of an n’s hole center. It is relatively straightforward to find 2N f integer coordinates
in (21) analytically given a reasonable approximation to the basis vectors, thus leaving 4 contin-
uous parameters in ā1,2 to be fitted. As before, we perform a fit with multidimensional Newton
method by minimizing the value of a fit variance function Q lat . In Fig. 5(a) vertices of a fitted
perfectly periodic underlying lattice are shows as white dots.

We now define a 2D random variable δ̄c = r̄n
0 − jn

1 ā1 − jn
2ā2 which we assume to be 2D

Gaussian distributed with PDD

P(δ̄c) =
1

2πσ1σ2
exp(−

(
δ x

c
δ y

c

)T

RT

( 1
2σ 2

1
0

0 1
2σ 2

2

)
R

(
δ x

c
δ y

c

)
), (22)

(C) 2005 OSA 4 April 2005 / Vol. 13,  No. 7 / OPTICS EXPRESS  2497
#6498 - $15.00 US Received 31 January 2005; revised 17 March 2005; accepted 20 March 2005



20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of features in a fit

σ1
, 
σ2

 a
lo

n
g
 p

ri
n
ci

p
al

 d
ir

ec
ti

o
n
s 

(n
m

)

σ
1

σ
2

(µm)

(µ
m

)

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

50 100 150 200
0

1

2

3

4

5

Number of features in a fit

σ1
, 
σ2

 a
lo

n
g
 p

ri
n
ci

p
al

 d
ir

ec
ti

o
n
s 

(n
m

)
σ

1
σ

2

Fitting the wavewguide layer 

Fitting the bend 

Fitting the other side of
a waveguide              

Fitting the other
side of bulk    

 

1 2 3 4 5 6 7 8 9 10 11

(µm)

(µ
m

)

1

2

3

4

5

6

7

a)

c)

θ

b)

d)

Fig. 6. (a) Uniform square PC lattice [26]. (b) σ1,2 as a function of the number of features
in a fit. Distribution of feature centers around the vertices of an underlying perfect lattice is
isotropic. (c) Triangular PC lattice with a waveguide and a bend [28]. (d) σ1,2 as a function
of the number of features in a fit. Distribution of feature centers around the vertices of an
underlying perfect lattice is anisotropic.

where R =
(

cos(θ ) sin(θ )
−sin(θ ) cos(θ )

)
is a 2D rotation matrix, and σ1,2 are the variances along the

two principle directions. One can deduce statistical parameters σ1,2,θ by using the following
averages of a 2D Gaussian random variable, < δ x

c δ x
c >= σ2

1 cos2(θ )+ σ2
2 sin2(θ ), < δ y

c δ y
c >=

σ2
1 sin2(θ )+ σ2

2 cos2(θ ), < δ x
c δ y

c >= 2cos(θ )sin(θ )(σ 2
1 −σ2

2 ).
In Fig. 5(b) we plot PDD of δ̄c along the two principle directions (θ = −1.6o) from the

lattice fit (solid lines) and a corresponding Gaussian distribution (dotted lines). We find that
a 2D distribution of feature center displacements from the vertices of an underlying perfect
lattice indeed appears to be Gaussian and is highly anisotropic. The RMS of the hole center
deviations from a perfect lattice is twice as large σ1 = 6.4nm in the direction perpendicular to
the waveguide than in the parallel direction σ2 = 2.9nm. In Fig. 5(c) we investigate in more
details the source of such an anisotropy. RMS deviations σ1,2 (along 2 principle directions)
of hole centers from an underlying lattice are plotted against the number of features in a fit.
Features in consecutive fits are added one by one, row by row starting from the upper left
corner of a structure Fig. 5(a). At leat two rows are needed to fit both basis vectors. When
only few features are included in a fit, parameters σ1,2 grow rapidly with each included feature,
finally “saturating” when 50 features are included (2 rows). We observe, quite generally, that at
least 10−20 features in each row are needed to determine parameters of a Gaussian fit reliably.
When more then 5 layers are included in the fit, and while approaching a waveguide region, hole
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center deviations from an underlying lattice become highly anisotropic. As we have mentioned
earlier, such an anisotropy can appear for non rectangular lattices. From analysis of various
PC images we observe that anisotropy in the deviations of feature centers from an underlying
perfect lattice is predominantly observed in the structures with symmetry breaking elements
such as waveguides, bends, etc. For PC lattices with waveguides, for example, we find that
frequently σ1 > σ2, where σ1 is RMS of feature center deviations in the direction perpendicular
to a waveguide, while σ2 is RMS of deviations in the direction parallel to a waveguide. Uniform
rectangular PC lattices without functional elements are typically isotropic σ 1 ∼ σ2. Most likely
physical reason for such an anisotropy being varying along a non-uniform PC lattice e-beam
proximity effects due to non-uniform local environments (see Appendix).

Image with resolution 1.63nm of a uniform square PC lattice containing 204 holes [26] is
presented in Fig. 6(a). Dependence of RMS parameters σ 1, σ2 along two principal directions
for increasing number of features in a fit is plotted in Fig. 6(b). Features in consecutive fits
are added one by one, column by column starting from the upper left corner of a structure.
One observes that σ1 ∼ σ2 ∼ 1.6nm for any number of features in a fit, “saturating” to their
stationary values after two rows (∼ 20 features) are included. In Table 3 we present a complete
statistical model of feature shapes and feature center distribution from ideal lattice for Fig. 6(a).

Coarse parameters
Rav(nm) δel(nm) θel(o)

73.3±1.9 1.7±0.8 36±22

Wall roughness
σ(2)(nm) λ 2

c (nm) HS Hσ
1.1 7.8 0.22−0.33 0.27−0.32

Deviations from a lattice
σ1(nm) σ2(nm) θ (o)

1.94 1.85 48

Table 3. Parameterization of features in Fig. 6(a), Air/Si membranes [26].

In Fig. 6(d) we present dependence of RMS parameters σ 1, σ2 along the two principal direc-
tions for increasing number of features in a fit for a waveguide and a bend in a PC lattice of holes
[28]. Features in consecutive fits are added one by one, row by row starting from the upper left
corner of a structure Fig. 6(c). One observes that σ 1 ∼σ2 ∼ 3nm when first three rows of a struc-
ture (Nf < 60) are included in the fit. Row number 4 is closest to a waveguide from the top and is
made of the holes with sizes somewhat smaller than the bulk ones. When including waveguide
edge row in a fit (60 < N f < 80) first sign of anisotropy appears with σ1 ∼ 4nm > σ2 ∼ 3nm.
Next twenty features introduce a bend into the structure (80 < N f < 100) making anisotropy
even stronger σ1 ∼ 5.5nm > σ2 ∼ 4nm. Finally, when the bulk of a PC lattice on the other side
of a waveguide is added into the fit, values of RMS of hole center variations from an ideal lat-
tice “saturate” to the values σ1 ∼ 5nm > σ2 ∼ 4nm, θ = 23o. From Fig. 6(d) we also notice that
RMS of distribution of feature centers around vertices of an underlying perfect lattice is loca-
tion dependent. Thus, far from any structural element (such as waveguide or a bend) σ 1 ∼ σ2,
while for the rows bordering a waveguide σ1 > σ2. Typically, PC regions directly bordering a
waveguide are the ones determining scattering and absorption losses of radiation propagating
through a waveguide, as light penetration into a PC lattice is limited to few periods. Thus, when
modelling effects of waveguide non-uniformity on radiation loss one has to pay special care to
derive a realistic statistical model of such non-uniformities in a region closest to a waveguide.

4. Discretized images and associated errors

In our edge detection algorithm, we first sort all the image pixels into two categories the ones
that belong inside of a hole and the ones that belong to a substrate. We work with normalized
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Fig. 7. (a) Image of a hole with a moderate contrast and a high noise level. Insert: histogram
of pixel values. Hole edges are detected with: (b) tol = 0.37 (c) tol = 0.40 (d) tol = 0.43

grayscale images where the value of each pixel pix is between 0 (black - hole) and 1 (white
- substrate). First, a 3− 5 pixel convolution (“smoothing”) is applied to each image to reduce
noise. To sort the pixels we compare their values to a threshold parameter tol, if pix < tol we
consider a pixel to be in the hole and assign it a value 0, while in the opposite case we assign
it a value 1. As different images have different contrast and noise levels to find a reasonable
value of a tol parameter we use a histogram of pixel values. In Fig. 7(a) we show an image
with resolution res = 1.25nm of a hole [24] and a histogram of pixel values in the insert. This
image features a moderate index contrast (pixel value ratio for the two maxima corresponding
to white and black is 0.6:0.1) and a relatively high noise (region 0.2-0.4 of substantial number
of pixels with values in between two maxima). For edge detection we try several values of a
threshold parameter tol = 0.37,0.40,0.43 around the local minima of a histogram in between
two maxima (see insert). Once all the pixels are sorted into two groups (with values 0 or 1) hole
edge is detected using a standard method of image convolution with a Sobel-like 3x3 matrix. In
Figs. 7(b,c,d) we present edges detected by using three different threshold parameters. As seen
from the images, detected edges are somewhat different from each other.

An important question is how sensitive are the statistical parameters characterizing feature
imperfections with respect to variations in tol. Detailed simulations show that for a ∆tol/tol ∼
15% change in a threshold parameter, statistical parameters only vary as ∆R av/Rav ∼ 2%,
∆δel/δel ∼ 12%, ∆σ(2)/σ(2) < 1%, ∆HS,σ/HS,σ ∼ 15%, ∆σ1,2/σ1,2 ∼ 5%. Note that for this
image, the parameter affected most by variations in tol is a Hurst exponent of a remaining wall
roughness. This is generally expected in the case of a noisy image where detected roughness
on the smallest case (several nm) is strongly affected by image noise, and hence a value of
a tol parameter. Thus, when the same sensitivity analysis is repeated for a higher resolution,
lower noise image Fig. 1(a) we find that for a ∼ 10% change in a tol parameter Hurst exponents
changes only by a few percents. We conclude that while there is indeed an uncertainty associ-
ated with a choice of a threshold parameter, the resultant values of the statistical parameters are
weakly sensitive functions of tol given a good quality image. Moreover, these uncertainties can
be further reduced by lowering the image noise level and increasing contrast.

Next, we estimate the level of discretization noise due to finite resolution of an image (red
curves in Fig. 4). Particularly, given an image we first fit its coarse parameters R 0,X0,Y0,Am,Bm

for a certain small number of angular momenta m = [2,M], M = 3− 8. Then, we consider an
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analytical curve rM
f it(θ ) with thus found fitted parameters (2) centered around X 0 = 0,Y0 = 0.

Next, we introduce a uniform mesh with the same resolution as that of an analyzed image and
project an analytical edge onto a discrete mesh to get a discretized approximation of an edge
rM

mesh(θ ). Then, we take a difference between an analytical curve and its discretized version
δnoise(θi) = (rM

mesh(θi)− rM
f it(θi)) to estimate the level and statistics of a nose due to image

discretization (red curves in Fig. 4). For all the images analyzed we find that RMS of δ noise(θ )
is on the order of 0.4 · res in the worst case, contributing most to the uncertainties in a wall
roughness parameter σ(M). Moreover, when a discretized edge is fitted by minimizing (1), the
error in the coarse parameters due to discretization is even smaller. Thus, when comparing the
center coordinates X mesh

0 ,Y mesh
0 by fitting a discretized edge with a circle and the exact center

coordinates X0 = 0,Y0 = 0, we find that their maximum discrepancy over all the images and
features did not exceed 0.1 · res. Thus, uncertainties in the parameters σ 1,2 of RMS deviation of
feature centers from a perfect lattice are also at most 0.1 · res.

5. Discussion and conclusions

We find that at least three sets of parameters are necessary to create a minimal statistical model
of 2D disorder in PC lattices. First set of parameters describes coarse properties of individual
shapes persistent over all features such as radius, ellipticity and other low angular momenta,
among which radius is the most important. Another set of parameters describes higher angular
momenta plus random edge roughness by a set of correlation functions (14) with parameters
λ M

c , σ(M) and H corresponding to correlation length, standard deviation and Hurst exponent.
Typically, unless written deliberately, we find that even low angular momenta components (such
as ellipticity) are not persistent from one feature to another and can be simply described as
part of a random edge roughness. A final set of parameters describes deviations of feature
centers from an ideal periodic lattice in terms of a 2D Gaussian distribution parameterized
by two principal directions and two variances σ1,2 along such directions. For PC lattices with
symmetry breaking elements such as waveguides, bends, etc. we find that due to non-uniform
e-beam proximity effects feature position disorder is frequently anisotropic σ 1 � σ2.

Findings of this paper are based on the analysis of over 30 high resolution pictures of the
“typical” e-beam written structures of various material combinations. In Table 4 we present the
values (within 2 standard deviations from the averages) of various statistical parameters aver-
aged over all analyzed images with resolutions 0.46nm−6nm. A somewhat surprising finding
is that despite all the different material combinations from which these PC lattices are made a
relatively narrow distribution of statistical parameters characterizing disorder is found.

Coarse parameters
Rav(nm) δRav(nm)(over features) δel(%)

133−172 1.5−3.5 1.9−2.9

Wall roughness
σ(1)(nm) λ 1

c (nm) σ(2)(nm) λ 2
c (nm) HS,σ

2.7−3.6 47−60 1.7−2.7 23−33 0.37−0.52

Deviations from a lattice
σ1(nm) σ2(nm)

2.4−5.3 1.6−3.2

Table 4. Ranges of statistical parameters over various PC lattices [21].
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Appendix

We demonstrate physical processes responsible for disorder in PC lattices on the example of a
particular fabrication process using direct e-beam writing in InP/InGaAsP/InP materials [22].

One starts with a semiconductor multilayer where top InP layer is 200nm thick, followed
by a 450nm thick optically guiding GaInAsP layer, then a 2µm thick buffer InP layer on the
bottom, and, finally, an InP substrate. Processing steps are as follows: first, on the top of an
InP layer one deposits a 250nm thick SiO2 layer, then on the top of a SiO2 layer one deposits
a 300nm thick PMMA polymer layer. After that, circular features are developed in PMMA
with e-beam writing. The short penetration length of electrons precludes the use of a solid SiO 2

substrate as a mask directly. Next, SiO2 layer is dry etched with CHF3 using the PMMA layer
as a mask. Finally, PMMA is removed and SiO2 layer is used as a mask for chemically as-
sisted ion beam etching [23] of holes. Resulting holes are typically etched 3−4µm deep. The
resultant structure is the etched PC lattice where roughness presents an accumulated effect of
several fabrication steps: PMMA development by e-beam writing, SiO 2 etching and semicon-
ductor multilayer etching. Overall, it seems that the resultant roughness is less a function of
a particular material combination but rather the details of a fabrication process. For example,
an alternative process to create a PC lattice resulting in higher roughness would be a so-called
lift-off process. In this process one deposits a PMMA layer directly on the top of an InP layer.
Then, the complementary of holes are developed by e-beam writing and a continuous metallic
layer is deposited. When washed by a solvent remaining PMMA dissolves by leaving a metallic
mask for the holes while somewhat tearing the metallic mask layer near the hole edges.

A typical e-beam writing strategy for planar PC lattices is direct writing : a beam of electrons
of a given diameter, moves pixel by pixel in x-y directions with a step size as small as 2.5nm.
A feature boundary is typically coded as a polygon of many vertices (18 in this case). This
polygon is then subdivided by software into elementary shapes such as rectangles and triangles
for further exposure. If lattice is not rectangular than it becomes impossible to resolve exactly
non-integer coordinates of the feature centers, which could introduce larger deviations of fea-
ture centers from an ideally periodic lattice along certain spatial directions. As the electrons
penetrate into the resist material a considerable number of them experience large angle scatte-
ring leading to backscattering, thus causing additional exposure in the resist and what is called
the electron beam proximity effect. Roughness introduced by e-beam proximity effects in the
PMMA resist is theoretically estimated to be on the order of 3−10nm, however the measured
roughness is typically smaller. If no software to compensate for proximity effects is used then
exposure conditions for points in different local environments will be different. This can result
in measurable distortions for the features located near the symmetry breaking features such as
corners, waveguides, bends, resonators, etc. by comparison with features inside of a uniform
periodic lattice. Finally, distortions in the shape of a feature (such as ellipticity of a hole) could
also come from a non optimal setting of an imaging SEM in a form of a ”residual astigmatism”,
which could also make roughness look erroneously larger along certain spatial directions.
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