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ABSTRACT 
 
 We present a fluid dynamics model for the drawing of hollow multilayer polymer optical 
fiber. A newtonian model is considered assuming slender geometries. Hollow core collapse 
during drawing and layer thickness non-uniformity are investigated as a function of draw 
temperature, draw ratio, feeding speed, core pressurization and mismatch of material properties 
in a multilayer.   

  

INTRODUCTION 
 
 Hollow core multilayer and microstructured optical fibers (MOF) for radiation guiding in 
the near and mid-infrared (IR) [1-11] have recently received close attention as they promise 
considerable advantage over their solid core counterparts in applications related to power 
guidance at almost any IR wavelength for military, industry and medical applications, IR 
imaging and sensing, and even THz transmission. Due to its complexity, fabrication of such 
waveguides is an active field of research. Four main methods have been identified for hollow 
core fiber manufacturing, each offering its own advantages and challenges. First method is a 
deposition of metallo-dielectric films on the inside of a drawn capillary by liquid-phase coating 
[5,6]; technical challenges in enforcing thickness uniformity in the resultant coatings limit fiber 
length to the distances of 10m. Second method is a capillary stacking method [7-9] where glass 
capillaries are arranged in a periodic manner and then drawn; so far such fibers have been mostly 
demonstrated to guide below 3 mµ  due to the non-transparency of silica and polymer materials 
used in the fabrication. Third method is a deposition of radially uniform thin films on a drawn 
substrate fiber by means of physical or chemical vapor deposition methods [10]; main challenge 
of this technology is presumably uniformity of the resultant coatings, and a throughput due to a 
relatively slow deposition process. Finally, film rolling process [11] starts with a deposition of a 
glass (chalcogenide) film on top of a polymer film with consecutive rolling around a mandrel 
tube, tube etching and drawing; potential challenges include fiber profile optimization which is 
somewhat nontrivial due to a strictly periodic reflector geometry imposed by the fabrication 
method, another potential challenge is controlling bio-compatibility of a resultant fiber.  
In our research group we study fabrication of all-polymer hollow multilayer fibers. Although 
refractive index contrast between layers in an all-polymer Bragg fiber is relatively small (at most 
1 3 1 7. / . ), as demonstrated in [12] liquid core all-polymer Bragg fibers can be designed to guide 
very well both TE and TM like modes, while gas filled all-polymer Bragg fibers can guide 
effectively a TE polarized mode. We believe that fabrication simplicity, and potential bio-
compatibility of such fibers can be attractive for applications in bio-medical sector. Recently, our 
research group has succeeded in developing two methodologies for fabrication of multilayered 
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all-polymer hollow preforms. One approach uses consecutive deposition of layers of two 
different polymers by solvent evaporation on the inside of a rotating polymer cladding tube [13]. 
Orthogonal solvents were found, and solvent evaporation process was developed for both 
PMMA(Polymethyl methylacrylate)/PS(Polystyrene) and PVDF(Polyvinylidene 
fluoride)/PC(Polycarbonate) material combinations. In Figure 1(a), a 30cm long all-polymer 
preform of 10  consecutive PMMA/PS layers deposited on the inside of a PMMA cladding tube 
is presented, while in Figure 1(b) preform crossection is shown. Alternative method uses a co-
rolling of two dissimilar polymer films similarly to [11]; in Figure 1(c), a 20cm long all-polymer 
preform of 19  consecutive polystyrene PVDF/PC is presented, while in Figure 1(d) crossection 
of a drawn fiber is shown.  
 

    

Figure 1. a) 30cm long all-polymer preform of 10  consecutive PMMA/PS layers deposited on 
the inside of a PMMA cladding tube b) PMMA/PS preform crossection c) 20cm long preform of 
19  consecutive PVDF/PC layers d) crossection of a drawn PVDF/PC  fiber. 

 
After preform is fabricated, hollow MOFs are manufactured by preform heating and drawing. 
Geometry of the final fiber can be significantly influenced by controlling various parameters in 
the drawing process such as temperature distribution in a furnace, fiber drawing and preform 
feed velocities, as well as pressurization of the hollow core. Moreover, if several materials are 
used in a single preform, drawing process can be influenced greatly by the mismatch in the 
viscosities of the constitutive materials.  
Previous studies on fiber drawing have focused mainly on spinning molten threadlines [14,15] or 
drawing conventional solid optical fibers [16,17]. Drawing of hollow fibers was first studied in 
[18] where the asymptotic “thin-filament“ equations were obtained but the effects of surface 
tension were neglected. A more complete analysis is given in [19-21].  
When relatively high temperatures or low speeds are used, the surface tension force can be of 
importance and it can cause an partial or even complete collapse of the hollow core. This hole 
collapse affects not only the initial ratio between the inner and outer diameters of the preform but 
also the uniformity of layers thickness. The purpose of this paper is to characterize such a hole 
collapse during the drawing of hollow fibers when the surface tension effects are non negligible. 
In particular, we investigate how the hole collapse is affected by standard control parameters 
such as draw temperature, draw ratio, feeding speed, core pressurization and mismatch of 
material properties in a multilayer.  
 



BASIC EQUATIONS 
 
 Schematic of a hollow multilayer preform profile during drawing is shown in Figure 2.  
 

  
Figure 2. Schematic of a hollow multilayer preform during drawing. Different colors correspond 
to different materials in a multilayer. 

 
For an incompressible axisymmetric steady flow the equations for conservation of mass and 
momentum in cylindrical coordinates are as follows:  
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where r  and z  are the radial and axial coordinates, rv  and zv  are the r  and z  components of 

the velocity vector v , ρ  is a constant density, p  is a pressure, ijτ  is an extra-stress and g  is a 

gravitational acceleration. The components of a total stress tensor σ  are  
 ij ij ijpσ δ τ= − +  (3) 



The definition of ijτ  depends upon the polymer model, and is discussed in details later. For these 

equations, we need to specify the boundary conditions. At the interfaces between different layers 
the kinematic conditions are  
 atjr z jv v r RR= =′  (4) 

where ( )j jR R z=  denote the interfaces between layers and the index 1 2j …N= ,  is used to 

number them starting from the inner one. The primes denote the derivative with respect to z . 
Since the first and the N-th interfaces are external interfaces, we will distinguish them by 
denoting 1iR R≡  and o NR R≡  for the inner and outer boundaries respectively.  
Hollow core can be pressurized in order to control its collapse under the action of a surface 
tension. In this case, at the inner interface the dynamic boundary conditions are  
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where γ  denotes the surface tension coefficient, and  
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is the curvature, while iP  is the hole overpressure (constant ambient pressure has no effect on the 

flow). Outward-pointing normal at the inner boundary in  is defined as:  
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while  
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is the unit tangent vector. In a similar way, the dynamic boundary conditions at the outer 
boundary are  
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where on , ot  and oκ  satisfy the same equations as − in , − it  and iκ  respectively with iR  

replaced by oR .  
At the interfaces between the internal layers, we will consider a continuous stress and velocity. 
In the axial direction the boundary conditions are the known values of the drawing ( dV ) and the 

feeding ( fV ) velocities. Furthermore, as an initial condition, the values (0)jR  are known.  

 
THIN FILAMENT EQUATIONS 
 
 One of the basic dimensionless parameters in the problem is the ratio between the 
preform radius and the length of the neck down region defined as ε . In the case when ε <<1 a so 
called thin filament approximation can be used. There are two different approaches for 
simplifying the equations in this case. In the first approach [19,22], the variables are expanded as 
power series in 2ε  and only the dominant terms are retained in the equations. In the second 
approach [18], which we also follow in this paper, the equations are averaged over the cross-
section at each value of z .  



The average ( )zϕ  of a variable ( )zϕ  is defined as  
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For the axial velocity, the assumption z zv v=  is made explicitly. We note first that for a slow 

varying thin filament; jR′ <<1, and by neglecting terms of the order 2
jR′  the boundary conditions 

(5) and (9) take the following form:  
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Multiplying the r -component of the momentum equation (2) by 22 rπ , integrating from iR  to 

oR , considering 22 0
o

i

R
d

rzdz R
r drπ τ ≈∫ , neglecting the inertial term because of the small value of 

the radial velocity and using the boundary values of rrσ  given by (11), we obtain  
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Multiplying the z -component of the momentum equation (2) by 2 rπ , integrating from iR  to 

oR , using the boundary values of rz rzτ σ=  given by (11) as well as the equation (12) and 

neglecting terms of relative order 2
jR′ , we obtain  
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where 2 2
o i zQ R R vπ π ⎛ ⎞

⎜ ⎟⎝ ⎠
= −  is the constant volumetric flow rate. This is the axial force balance 

equation.  
 
NEWTONIAN FLOW 
 
 In general polymers are viscoelastic and the viscosity depends on the kinematics of the 
flow. But at high temperatures, for some polymers such as PMMA and PS, we can still consider 
a Newtonian model. The constitutive equation for the Newtonian fluid is  

 ( )( ) Tr zτ η= , ∇ + ∇v v  (14) 

where η  is the viscosity which in our case depends on r  and z . In this paper we consider a 
uniform temperature in any given cross-section, thus T  is only a function of z . We also assume 
an axial variation of the temperature dependent viscosity for each constituent material. From the 
continuity equation one finds:  
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where ( )A A z=  is a function to be determined later. The extra-stress tensor takes the form:  
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where the component rv
rz zτ η ∂

∂=  has been neglected. From (16) the following relation holds for 
the averaged components of an extra-stress tensor  
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and the axial force balance equation (13) can be written in the form  
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The expression for A  is obtained by directly integrating the r -component of the momentum 
equation (2) from iR  to oR  and using the boundary values of rrσ  given by (11)  
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Combining the kinematic boundary conditions (4) with relation (15), we obtain  
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NUMERICAL SOLUTION 
 
 The last three equations may be considered as a system of coupled differential equations 
for ( )zv z , ( )A z  and ( )jR z . This system of equations can be solved with an iterative method. 

Starting from an arbitrary initial distribution of ( )zv z , say a linear distribution between the 
feeding and drawing speed, the initial value equations (20) can be integrated in order to obtain 

( )jR z  with the value of A  given by (19). This functions are then used to solve the boundary 

value problem (18) to obtain a new function ( )zv z  passing so at the next iteration. For the 
examples given later in this paper we have tested this procedure and it converges very fast (less 
than 200 iterations).  
In most cases of practical importance, inertial, gravitational and capillary terms in (18) can be 
neglected and it takes a simple form  
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where C  is a constant. This equation, which is now uncoupled from the other two, can be easily 
integrated to give  
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where L  is a furnace length. Once the axial velocity is known, the initial value equations (20) 
can be easily integrated to obtain the profile of a drawn structure.  
One of the key aspects of hollow preform drawing is the partial or even complete collapse of a 
compressible core as a result of the surface tension forces acting at the free boundaries. In what 

follows we characterize the hole collapse by the ratio 
f p

i i
f p

o o

R R

R R
/ , where index f  defines the drawn 

fiber, while index p  defines the preform.  
Hole collapse typically results in a faster reduction of a smaller core radius compared to the 
larger outer radius. Thus, starting with identical thicknesses of the same material layers in a 
preform, in a drawn fiber the inner layers will become thicker than the outer ones. We will 

characterize the thickness non-uniformity by the ratio o

i

h

h  between the thickness of the outer layer 

and the thickness of the inner one, assuming they were equal in a preform.  
In the following we investigate how the hole collapse and layer thickness non-uniformity is 
influenced by various control parameters. As an example, we consider drawing of a multilayer 
hollow Bragg fiber preform where cladding tube and one of the two materials of a multilayer is 
PMMA, while the other material is a different polymer. Materials in consecutive polymer layers 
are alternated to create a periodic multilayer structure.  
 

Effects of draw ratio, temperature and viscosity mismatch 
 
 In our calculations we assume a uniaxial temperature distribution with a maximum at the 
furnace center (Figure 3). In the following when we vary the maximum value of the temperature 
(T) we simply rescale the whole profile. We assume that Newtonian viscosity of PMMA obeys 
an Arrhenius type dependency [23]  
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Figure 3. Temperature distribution in the furnace. 

In our first calculation viscosity of the other polymer is assumed to be simply two times higher 
than that of PMMA. Although we recognize that to model correctly the flow of a particular 
polymer we need to use its proper temperature dependent viscosity, in our first simulation we 
rather want to highlight the major effect of adding another material into a preform. Particularly, 
we want to investigate how the core collapse is affected by the viscosity of the second material 
despite of its small volume fraction in the preform.  
We consider drawing of a preform with external and internal diameter 31.75 and 25.4mm 
respectively. PMMA tube is coated on the inside with 25 alternated layers of PMMA and another 
polymer with a viscosity two times higher, each one of them having a thickness of 50 µ m. The 
value of surface tension coefficient is considered constant for exterior interfaces 0 032γ = . N/m 

[24] and both densities are considered to be 1195kg/m 3  [23]. We also assume a furnace length 
30L = cm, a constant preform feeding velocity 2 5fV µ= . m/s and a zero pressurization 0iP = .   

First, we consider the effects of varying the drawing ratio defined as r d fD V V= /  and the 

maximum temperature in a furnace. In Figure 4(a), solid lines represent the parameter of a core 

collapse 
f p

i i
f p

o o

R R

R R
/  as a function of a draw ratio r d fD V V= /  for different values of the maximal 

temperature. Dashed lines represent the parameter curves resulting in a constant outside diameter 
2 125o oD R mµ≡ =  and 250oD mµ=  after the draw. For comparison, in dotted curves we 

present the core collapse if no other polymer is present in the preform (drawing of a simple 
PMMA tube of the same inner and outer radii as a multilayer preform).  
We see that to prevent hole collapse higher draw ratios and lower temperatures have to be used. 
Both cases demand higher draw force which might lead to fiber breakage. We also observe that 
the collapse of the tube with the same thickness as the multilayer preform is more pronounced 
because of a lower average viscosity. Effect of the temperature on a core collapse is easy to 
understand as viscosity decreases rapidly with reduction of the temperature, thus hindering the 
hole collapse.  
 



 
                                                                     (a)     

 
                                                                   (b)     
Figure 4. (a) Normalized ratio i oR R/  as a function of a draw ratio rD  for different temperatures. 
Solid  lines describe drawing of a multilayer preform. Dotted lines describe drawing of a simple 
tube having exactly the same dimensions as a multilayer preform. Dashed lines represent the 
curves of a constant outside diameter. (b) Ratio o ih h/  between the inner and outer layer 
thicknesses as a function of the draw ratio for different temperatures. 
 
Effect of the draw ratio is more subtle. Starting with preforms of the same diameter, draw ratio 
increase leads to the reduction of a resultant fiber cross-section. As a consequence, the forces of 
surface tension become more pronounced, thus favoring the hole collapse. This is 
overcompensated by the fact that increasing the draw ratio leads to the higher axial velocities, 
thus the time a cross-section spends in a melted zone diminishes which works against the hole 
collapse.  



In Figure 4(b), thickness non-uniformity parameter is presented as a function of the draw ratio 
for different values of the maximum temperature. The curves are similar to those for the hole 
collapse in Figure 4(a). From mass conservation, the ratio between the cross-section areas of 
different layers remains constant from which it follows that the thickness non-uniformity 
parameter is proportional to the hole collapse.  
We now describe in more details the effect of mismatch in the polymer viscosities when two 
different materials are used in the same preform. As seen in Figure 4(a), the hole collapse is 
considerably less pronounced for the multilayer structure despite the fact that the higher viscosity 
material occupies only a very small fraction of the total volume and its viscosity is only two 
times higher than that of PMMA. In what follows we assume that multilayer preform is made of 
PMMA and another polymer. For the viscosity of a second material similar Arrhenius law as for 
PMMA is assumed (23)  
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where 0η  and α  are constant coefficients and 0T  is a reference temperature. First, we investigate 

the effects of changing 0η  while keeping the other parameters unchanged, which corresponds to 
the case of using the same polymer, but with a different molecular mass. Second, we investigate 
the effects of changing 0T  which corresponds to the case of varying the polymer material. In 
Figure 5, we consider drawing of preforms of various compositions at a fixed maximum furnace 
temperature of 190o C and a draw rate 30000rD = . Multilayer preform geometry is the same as 

described above; mismatch in the polymer viscosities is described in terms of the ratios of the 
material parameters 0 0 PMMAη η ,/  and 0 0 0( )PMMA PMMAT T T, ,− / . From Figure 5, we see that the hole 

collapse depends significatively on the viscosity of a second material and can be prevented by 
choosing a polymer with an appropriate viscosity.  
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Figure 5. Effect of mismatch in the viscosities of materials in a multilayer on core collapse 
(solid lines), and layer non-uniformity (dotted lines).Maximum furnace temperature is 

190T = o C, draw rate 30000rD = . 

Effects of the pressurization and preform feeding velocity 
 
 Other parameters that influence core collapse are the hole overpressure and the feeding 
speed. By increasing the hole pressure we expect to reduce the hole collapse. Also, for a given 
draw ratio, by increasing the preform feeding speed we expect reduction of the core collapse as 
fiber cross-section would spend less time in the melted zone.  

 
                                                                     (a)     
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Figure 6. The hole collapse and thickness non-uniformity as a function of the hole overpressure 
(a) and feeding speed (b). Maximal furnace temperature is 190T = o C, draw rate 5000rD = . 

 
We consider drawing of the same preform as in a previous section using the draw ratio 

5000rD = , while the other draw parameters remain unchanged. In Figure 6, core collapse and 

layer thickness non-uniformity are presented as functions of the hole overpressure iP  and 

feeding speed fV . As expected, the hole collapse is very sensitive to pressurization, and in 

principle, can be reduced by increasing the pressure. Time evolving transient draw simulations, 
not discussed in this paper, also show that above a certain critical value for an overpressure, 
which in our case is less than 7Pa, even if the fiber does not blow up immediately, the drawing 
process never reaches its steady state. A more subtle way of controlling the core collapse is by 
changing the preform feeding speed, although, for a given draw ratio, this could be limited by the 
maximal draw velocity.  
 

CONCLUSION 
 
 Drawing of multilayer hollow polymer fibers was studied using the thin filament 
approximation. A Newtonian model for the flow was considered. We have characterized surface 
tension mitigated core collapse and closely related layer thickness non-uniformity. We have 
demonstrated that by varying various control parameters such as furnace temperature, feeding 
speed and pressurization it is possible to reduce hole collapse. While hole pressurization provides 
a very effective way of compensating for the hollow core collapse, it was found that the final 
fiber dimensions are very sensitive to the value of an overpressure. Moreover, the draw process 
could newer reach a steady state if overpressure larger than a certain critical value were used.  
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