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ABSTRACT: We have considered the problem of protein design based on a model where the contact
energy between amino acid residues is fitted phenomenologically using the Miyazawa-Jernigan matrix.
Due to the simple form of the contact energy function, an analytical prescription is found which allows
us to design energetically stable sequences for fixed amino acid residue compositions and target structures.
The theoretically obtained sequences are compared with real proteins, and good correspondence is obtained.
Finally, we discuss the effect of discrepancies in the procedure used to fit the contact energy on our
theoretical predictions.

I. Introduction

It is well-known that natural proteins fold into their
native structures remarkably easily in spite of the
enormous number of possible physical configurations.1
For small proteins the native structure can be deter-
mined by the global minimum of the free energy.2 It
has been conjectured3-5 that protein sequences are
“optimized” such that not only is there a stable unique
structure for the ground state but also the free energy
landscape is funnel-like, which leads to efficient folding
kinetics. A principle of minimal frustration was pro-
posed6 to enforce a selection of the interactions between
monomers such that as few energetic conflicts occur as
possible. Among other things, considerable theoretical
effort has concentrated on finding proper models for
protein folding and investigating various sequencings
which lead to fast folding kinetics. In this regard,
statistical analysis has played a very useful role in
identifying the most relevant factors which determine
the process of protein folding.
A statistical mechanical treatment of the protein

folding problem requires a tractable form for the inter-
actions between the various amino acid residues. One
approach is to determine the contact interactions be-
tween each pair of amino acid residues using experi-
mental data. Since there are 20 different amino acid
residues, a total of 210 such interaction parameters is
required for a complete description. This is the ap-
proach of Miyazawa and Jernigan.7 Another simpler
approach used by many researchers is to replace the
detailed interaction between amino acid residues by a
minimal two-parameter model where one parameter
represents the attractive interactions between nonpolar
groups and the second represents the interactions
between the polar and nonpolar groups. Clearly, the
simple models based on the second approach are easier
to analyze and they have been successfully used for
qualitative studies of protein folding, but they are still
far from reality. However, even though more involved
models give reasonably good agreement with experi-
ment, they are unfortunately difficult to analyze theo-
retically. From this point of view, it is useful to
introduce a compromise between minimal and more
complete models, such that the resulting model is
detailed enough to capture most of the essential char-
acteristics of protein folding while at the same time
being sufficiently simple for a tractable analytic ap-

proach. Indeed, it was shown by Grossberg et al. that,
when the properties of real proteins are studied using
an energy interaction matrix, sufficiently stable ground
states can still be obtained even if there are some errors
in the numerical values used for this interaction ma-
trix.8

In a recent article,9 Li, Tang, and Wingreen (LTW)
suggested a particularly interesting parameterization
of a statistical potential which was originally derived
from known protein structures. By analyzing the
Miyazawa-Jernigan (MJ) interaction matrix,7 they
found that the entire 20 × 20 MJ matrix can be fitted
very well by a simple form,

where Eθσ is the contact energy between amino acid
residues of type θ ∈ (1, .., 20) and type σ and qθ is a
negative real number which is assigned to amino acid
residues of type θ. In their fit to the MJ matrix, Li et
al.9 found numerical values lying in the range [-3.0,
0.0] for the quantities {qθ}. The form for the MJ matrix
given by eq 1 thus has the following physical interpreta-
tion. The (qθ + qσ) term corresponds to solvent exclu-
sion, which is responsible for the formation of the
hydrophilic surface and the hydrophobic core of the
folded protein, whereas the âqθqσ term represents
segregation, which is responsible for the differentiation
of secondary structures inside of the hydrophobic core.
This fitting form, while not necessarily unique, reveals
the intrinsic regularity of the interactions between the
various amino acid residues and reduces the total of 210
interaction parameters to essentially 20. Hence this is
clearly a useful formal step in the theoretical analysis
of protein folding. It is also interesting to notice that
the particular form of the contact energy Eθσ, being a
combination of linear and quadratic terms, has also been
discussed in previous protein folding literature.10-12

In this work we use this form of contact interaction
with the fitting parameters given by the work of Li,
Tang, and Wingreen to examine the following questions
analytically. For a given protein compact target struc-
ture and a given amino acid composition, how can we
find a sequence of the parameters {qθ} that minimizes
the total energy? Once a sequence that gives the
minimum energy for the target structure is predicted,
how does this “optimal” sequence compare with the
protein sequence in the native state? How sensitive are
our predictions to the fitted form given by (1)? Obvi-X Abstract published in Advance ACS Abstracts, May 1, 1997.

Eθσ ) qθ + qσ + âqθqσ (1)
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ously, these are important questions related to the
protein folding problem. The motivation to investigate
these questions analytically comes from the inspiring
work of Shakhnovich and Gutin13 who devised a nu-
merical approach for the design of stable proteins by
randomly permuting the amino acid residues for a given
target structure using a Monte Carlo algorithm. We use
the considerable intuition obtained from various impor-
tant numerical calculations13-15 to serve as a guide for
our analytical examination of the above questions.
Because we are mainly concerned with the energetics

of protein design, the sequence will be specified only by
the parameters {qθ}. Hence a given composition is
equivalent to a particular set of values for these
parameters. We next fix a target structure for the
protein. This is basically a three-dimensional space
curve along which nodes labeled by i ∈(1, .., L) are
located at equal distances from each other. Here L is
the total number of monomers (amino acid residues) in
the protein chain. A “model protein” is obtained by
placing amino acid residues on these nodes. Since each
amino acid residue corresponds to a specific value of the
parameter qθ, a sequence of these parameters must be
obtained such that the total energy is a minimum for
the given target structure. This sequence can be
achieved by permuting the amino acid residues on the
nodes until the energy reaches a minimum. However,
such an exhaustive search quickly becomes intractable
in the limit of long proteins. Numerically, one can
improve the search by using important sampling tech-
niques such as the Monte Carlo methods.13 Once the
minimum energy configuration is found, we will have
obtained, at least theoretically, a “model protein” which
is stable energetically. Clearly, if nature produces
proteins only according to energy minimization, our
“model protein” obtained in this manner should be very
similar to the native state of the actual protein. We will
thus compare our predicted amino acid sequence for the
given target structure with the native state of the
corresponding protein as given in the Protein Data
Banks (PDB). Clearly, some differences should be
expected since proteins also possess functional proper-
ties and they can not be considered as purely energetic
units.
In our analytical work, we use the expression of eq 1

as a model (referred in the following as the LTWmodel)
for the interaction matrix between monomers. It is then
reasonably straightforward to make some general state-
ments concerning the above questions while maintain-
ing a good correspondence with the behavior of real
proteins. In particular, we derive an expression for
sequencing the parameters {qθ} for a given target
structure such that the total energy of the protein is
minimized. Our expression is exact if the segregation
term is neglected. We also show that the segregation
can be included in an extremely good approximation,
which we confirm by comparing results of our analytical
predictions to those from exact numerical exhaustive
search. Finally, we confirm the results of our calcula-
tion by numerically calculating the overlap between
predicted sequences and the native protein sequences
using 84 randomly chosen proteins from the Brookhaven
Protein Data Bank with lengths ranging from L ) 21
to L ) 680.
The article is organized as follows. In section II we

first derive the relevant formula for sequencing without
the segregation term and we next treat the segregation
as a perturbation. In section III we present our nu-

merical tests on the perturbation treatment of the
segregation term. The comparison of our predictions
to those from PDB will then be presented. Section IV
includes an estimate of the range of validity of our
predictions in relation to the possibility of discrepancies
in the fitted form of the MJ matrix, as given by eq 1. A
summary of the main results is included in the last
section.

II. Protein Design Using the LTW Model
In the following we use the LTW model of eq 1 to

“design” a stable sequence for a “model protein” with
respect to a given amino acid composition and a given
target structure. It is worth noting that the calculations
presented below do not require the presence of a lattice,
although they can also be applied to lattice models. For
our problem, while we should denote qi

θ as the param-
eter qθ on node i of the target structure, without causing
confusion from now on we shall simplify notation by
dropping the Greek superscripts. Thus the contact
interaction between monomer i and monomer j is
written as

with the understanding that qi is given by one of the
20 possible values. As mentioned in the original work
of ref 9, it follows from the values of the fitted q
parameters that the solvent exclusion term (qi + qj)
gives the main contribution to the MJ energies Eij.
Hence it is reasonable to consider first the interaction
Eij ) qi + qj only and then investigate the influence of
the segregation term âqiqj. This will be our approach.
A. Solvent Exclusion Term. As stated above, we

first examine the LTW model for the case when the
interaction matrix between monomers is given by the
solvent exclusion term Eij ) qi + qj only. Here we will
assume that two monomers are in contact if the distance
between them is smaller than a length scale of the order
of a few angstroms. Following Li et al.,9 we take this
scale to be 6.5 Å. Then, if ni denotes the number of
closest neighbors to the ith node on our target structure,
the total energy of the protein structure is given by

and ∑ini ) 2N and N is the total number of contacts.
As an example, we apply eq 3 to the target structure

with 12 nodes on a 2D lattice shown in Figure 1. By
placing 12 amino acid residues (monomers) with pa-

Figure 1. Sketch of a typical target structure on a 2D lattice
with 12 nodes. The notation n(qm) on each node states that
the node associated with parameter qm has n nearest neigh-
bors.

Eij ) qi + qj + âqiqj (2)

E ) ∑
i,j
Eij ) ∑

i,j
qi + qj ) ∑

i

niqi (3)
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rameters q1, q2, ..., q12 on these nodes, we obtain a
“model protein”. For this structure there are 6 pairs of
contacts: the monomer on the first node with “amino
acid residue” q1 has three contacts, the monomer on the
second node with q2 has two contacts, while all others
have either one or no contacts. Using eq 3 the energy
is given by E ) 3q1 + 2q2 + q3 + q4 + q6 + q8 + q9 + q11
+ q12. This example shows that it is natural to specify
the target structure by a vector with elements repre-
senting the number of closest contacts to each node.
Hence for a particular structure with L nodes on a 2D
lattice, the geometric conformation is represented by the
“contact vector” nb ≡ {ni} where ni ⊂ {0, 1, 2} if i ⊂ {2,
..., L - 1}; and ni ⊂ {0, 1, 2, 3} if i ⊂ {1, L}. In this
notation the ith component of nb gives the number of
closest neighbors to the ith node. A similar prescription
can easily be written down for 3D systems. It is clear
that the length of a vector nb will in general increase as
the number of contacts in a given structure increases.
Next we introduce a second vector with L components,

qb ≡ {qi}, which specifies a particular sequence of the
values of {qi} imposed on the geometrical structure
defined by nb. The placing of amino acid residues on the
nodes of the target structure is equivalent to assigning
the corresponding values of qi to each node. Then using
eq 3 the energy of the “model protein” can be rewritten
as

Equation 4 shows that the energy is separable in the
geometrical factors and the details of a particular
sequence in this model. Using our notation, if one draws
all possible vectors of type nb corresponding to all
different geometrical structures of a protein, the con-
figurational space of the protein will be represented by
a vector bundle generated by the set of all nb vectors,
while a particular sequence will be represented by a
single vector qb. Then, as seen from eq 4, the energy
spectrum for a particular set of amino acid residues on
a given target structure will be determined by the
projection of the vector bundle onto the vector qb. As
mentioned above, more compact conformations will in
general have longer nb vectors since compact structures
tend to have more contacts between monomers and the
corresponding length will be proportional to L1/2. Given
that the most compact conformation is represented by
the longest vector, nbmax, all less compact conformations
will lie inside a sphere of radius equal to the magnitude
of nbmax. Nearly compact conformations will then lie in
the neighborhood of this sphere.16 This is shown in
Figure 2.
We now consider a specific sequence defined by a

vector qb with magnitude Q. We next denote a given
compact geometrical target structure for a given protein
as nbR. If we are not limited by a particular composition
represented by a fixed set of values of the parameters
{qi}, the energy minimization and design is straight-
forward. Equation 4 shows directly that the system
energy is minimized if we choose qb to be antiparallel to
the vector nbR, as shown in Figure 2. For this trivial case
we thus obtain the “ideal” sequence, qbideal, which gives
the lowest possible energy for the target structure
represented by nbR

However, such an “ideal model protein” is not real-
istic, as it does not respect the particular values of the
parameters {qi} corresponding to the actual set of amino
acid residues defining the primary structure of the
protein. Hence the set of values of the parameters {qi}
must be fixed in order to specify a particular protein.
The problem then becomes more complicated as the total
energy must now be minimized subject to this con-
straint. Furthermore, we can only minimize the energy
by shuffling the given parameter set of the parameters
{qi} among the different nodes of the target structure.
This corresponds to performing discrete rotations of the
vector qb in its specific vector space rather than the
continuous rotations used to find the “ideal” sequence.
However, even under this constraint we can still solve
the problem close to analytically.
We begin by stating the following well-known inequal-

ity. If

where ni and qi are arbitrary real numbers, then

where qki represents any permutation of the set of
parameters qi. We now fix the amino acid composition
by fixing the values of the components, qi, of a given
vector qb, where the amino acid residue corresponding
to qi is placed on the ith node of the target structure.
We change the amino acid sequence on the target
structure by permuting the values qi among the nodes
of the target structure represented by the vector nbR. This
gives us a new vector representing a different amino
acid sequence on the target structure. Now the mini-
mization of the energy with respect to the target
structure given by E ) nbR‚qb clearly requires us to find
a vector, qbmin, which is as antiparallel to nbR as possible.
Since the fitted numerical values for the parameters qi

Figure 2. Configurational space of the protein as represented
by a vector bundle generated from all vectors of type nb. A
particular sequence is represented by a vector qb.

n1 g n2 g n3 ... g nL

q1 g q2 g q3 ... g qL

∑
i)1

L

niqi g ∑
i)1

L

niqki (6)

E ) ∑
i

niqi ) nb‚qb (4)

qbideal ) nbR( Q2

nbR‚nbR
)1/2 (5)
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are all negative, we devise the following procedure on
the basis of the inequality of eq 6. In this procedure
we minimize the energy by first sorting all the compo-
nents qi according to their absolute values and then
sorting all nodes on the geometrical target structure
according their number of nearest neighbors. We then
place the amino acid residues corresponding to larger
values of |qi| on the nodes of the target structure which
have larger numbers of contacts, and the amino acid
residues corresponding to smaller values of |qi| on the
nodes with a smaller number of contacts. This is a
systematic way of finding the sequence which gives a
stable (minimum energy) protein target structure.
Since no exhaustive search is involved, essentially no
computer is needed. However, from the energy point
of view, this procedure, because it is based on eq 3, will
produce sequences of {qi} in which as many hydrophilic
amino acid residues as possible are on the surface of
the target structure and as many hydrophobic amino
acid residues as possible are in its interior. This will
be corrected in the next section when the segregation
term is included.
The method discussed here may lead to degeneracies

of the final sequence {qi}; i.e. there may be more than
one sequence which gives the same minimum energy
for the target structure nbR. This is easy to understand
by noticing that a compact structure predominantly
consists of “surface” monomers with a small number of
nearest neighbors and “interior” monomers with a large
number of such neighbors. Thus, the geometrical
permutation of “interior” monomers among themselves
or “surface” monomers among themselves made by
permuting the relevant parameters, qi, will not alone
change the energy. The sequence obtained from the
above procedure hence specifies the structure up to a
differentiation of “surface” and “interior” monomers
only.
B. Segregation Term. In order to treat the segre-

gation term âqiqj in our analysis, we use the result of
ref 9 that it is small in comparison with the solvent
exclusion term studied in the last subsection and that
it should not alter the relationship between “surface”
and “interior” monomers. Thus the inclusion of this
term should not cause a substantial change in the
geometric vector, nb, of our model protein. However, this
term will at least partially break the degeneracy in the
secondary structure. Because the segregation term is
quadratic in qb, it energetically favors segregation be-
tween different amino acid residues and leads to an
increased specificity of the overall structure. Including
this term, we now investigate which sequence should
be chosen so that the given target structure will have
minimal energy.
As in the previous section, we first find the ideal

sequence qbideal by only fixing its length to be Q and then
minimizing the energy of the target structure denoted
by vector nbR. Mathematically, the problem is to mini-
mize the function ∑ijEij ) ∑ijqi + qj + âqiqj, â < 0, qi <
0, while keeping the length of qb fixed at the value Q.
For this purpose, we introduce the contact matrix, CR,
which has elements Cij

R ) 0 if ith monomer does not
have jth monomer as a nearest neighbor and Cij

R ) 1
otherwise. We can then rewrite the energy of the target
structure with a sequence qb as follows

Using the method of Lagrange multipliers one finds the
following sequence which gives the minimum energy,

where I is the identity matrix and λ is the solution of
equation

These equations can easily be solved, and they can be
replaced by their expansions in â for proteins with small
numbers of monomers.
The sequence qbideal as solved above gives the lowest

possible energy for a given target structure. However,
it does not respect the actual amino acid composition of
the real protein. We should instead fix the composition
and only shuffle the elements, qi, of the vector qb instead
of changing their values. In the previous subsection,
we gave a prescription for finding a sequence exactly
for a given composition. However, with the inclusion
of the segregation term we can no longer access an exact
solution, but we can make an extremely good ap-
proximation for the desired sequence. The approxima-
tion we use here has the character of a mean field
analysis in that we replace one of the vectors, qb, in the
quadratic term of eq 7 by qbmf, i.e.

Here nbR
mf is the sum inside the bracket and results in a

slight change of the elements of the nearest neighbor
vector. The choice of qbmf may be qbideal using eq 8, which
we obtained in this section, or the optimized sequence,
which we obtained without the segregation term. With
this new form of energy, we can use the same sorting
prescription discussed at the end of the last subsection
to find the minimal sequence qb under the constraint of
fixed composition. In the next section we shall confirm
this mean field like analysis by comparing results to
those from the exhaustive numerical search.

III. Numerical Results
To confirm the predictions by our analytical design

method discussed in the last section, in the following
we shall examine the quality of our mean field like
analysis of the segregation term and compare our
results to those from real protein structures using 84
randomly chosen proteins from PDB.
A. Lattice Enumeration. While our method of

finding an optimal sequence without segregation term
was exact, the validity of the mean field approach to
include the segregation, eq 10, needs to be investigated.
To this purpose, we have used the compact structure of
Figure 1 as the target structure nbR, and fixing a
composition of the parameters qi ∈(-4.0, 0.0), we
designed the optimal sequence qbopt using our analytical
method including the segregation term. With a choice
of qbmf (see below), this procedure minimized the energy
E(R) ≈ nbR

mf‚qbopt within the mean field approximation to
give qbopt by eq 10. We then exhaustively generated all
other possible structures of this 12 monomer self-
avoiding chain on a 2D lattice, and we denote these
structures by nbη where η * R. The energies, E(η), of
these other structures are calculated using eq 7. We
then compare E(R) with the smallest E(η) to see which is
lower. Finally, we have checked 60 different amino acid{E(R) ) nbRqb + â

2
qbCRqb

qb‚qb ) Q2
(7)

qbideal ) [λI - âCR]-1‚nbR (8)

Q2 ) nbR‚[λI - âCR]-2‚nbR (9)

E(R) ≈ (nbR + â
2
qbmfC

R)‚qb ≡ nbR
mf‚qb (10)
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compositions with qi’s randomly generated from the
above range. We have fixed the parameter â ) -0.476
in this numerical check, and several observations are
in order.
First, for 57 out of the 60 random compositions tested,

E(R) < E(η). Hence our analytical design with the mean
field approximation indeed generated the sequence
which guarantees the compact target structure to be the
ground state. For the other 3 compositions of the qi’s,
each case has only one chain structure which gave a
slightly lower energy than E(R). However, the difference
is very small, being 0.3%, 0.6%, and 2.8%. We may thus
conclude that the accuracy of our mean field treatment
of the segregation term is acceptable. Second, we found
no difference to this conclusion using two different qbmf
in eq 10. The two most evident choices of qbmf are the
optimized sequence which we obtained by neglecting the
segregation term (see section II.A), or the qbideal of eq 8
where we included the segregation term. They work
equally well. Finally, our numerical test also gave a
measure of the relative importance of the segregation
term. If we directly use the optimized sequence deter-
mined without the segregation term as qbopt to compute
the energy using eq 7, rather than determine qbopt as we
have done so far, the comparison with the lattice
enumeration is worse. In this case 27 out of the 60
random compositions gave E(R) < E(η). On the other
hand, the other 33 compositions produced a chain
structure with lower energy than the target structure
nbR, with differences which are less than 10%. This
means that choosing a sequence which is only optimal
without the segregation term, we have a lower prob-
ability of making a target structure to be the ground
state, although the result is still not far from it.
Our mean field approach can also be applied to the

model where the contact energy is determined solely by
the segregation term: Ei,j ) âqiqj. In terms of the total
energy, we have E(R) ) (â/2)qbCRqb. With the approach
discussed above, we again tested 60 randomly generated
sequence compositions by comparing our analytically
designed results to the exact enumerations using the
12 monomer chain of Figure 1 as the target. Of these,
in 49 cases the designed sequences made the energy of
the target structure to be the ground state. In the
remaining 11 cases, the designed sequences produced
higher energies than some structures other than the
target, but the differences were less than 10% with only
one case of about 28%. Hence, for this purely quadratic
model, our design method also works quite well.
With the above comparisons, we may conclude that

the mean field approach to the segregation term is an
acceptable approximation for finding an optimal se-
quence for general models described by contact energies
in the form Ei,j ) C0 + C1(qi + qj) + C2(qiqj).
B. Comparison to PDB. In the previous sections

we have derived analytical expressions and devised
exact or approximate methods to find sequences with
fixed composition which minimize the total energy of a
given target structure. Using this method, we showed
how “model proteins” can be generated. The next step
is to see how closely these “model proteins” resemble
the native states of the real proteins with the same
composition. This is important since natural proteins
have other functional properties and do not just mini-
mize their energy during the folding process. In addi-
tion, our analysis so far is based on the model described
by eq 1, which is a result of fitting to experimental data.9
Hence, some numerical discrepancies in the fitted

parameters, {qi}, can be expected. These will give rise
to differences between our model proteins and their real
counterparts.
In order to check the accuracy of our predicted

sequences with fixed composition and fixed target
structure, we randomly chose 84 proteins with lengths
between L ) 21 and L ) 680 from the Brookhaven
Protein Data Bank as our target structures. We exam-
ine the quality of the predictions by using two param-
eters that give a measure of the overlap of our “model
proteins” with real protein structures. The first param-
eter uses a scale that only distiguishes between hydro-
phobic and hydrophilic amino acid residues

Here Ri and Ri
real equal 1 if the ith amino acid residue is

hydrophobic and 0 otherwise. In the following we
consider an amino acid residue to be hydrophobic9 if its
strength qi e -1.5. Clearly, PH0 approaches unity if
the predicted values of Ri are close to those of the real
protein, Ri

real. The second parameter we use is defined
as

where {qi} is the predicted sequence while {qi
real} is the

real sequence. This quantity is a more refined measure
than PH0 since it uses the complete 20 letter code
instead of the two letter code used to define PH0.
Throughout the calculations we have used the values
of {qi} as fitted in ref 9. Again, we consider two
monomers in contact with each other if the distance
between them is less than 6.5 Å.
Before proceeding any further, we present an expres-

sion for PH0 for a random sequence of the same
composition as a real protein. This expression can
easily be obtained from eq 11. If n0 is the total number
of hydrophilic amino acid residues and n1 is the number
of hydrophobic ones, we obtain

From this expression we conclude that PH0 is usually
greater than 0.5 for a random sequence and it equals
to 0.5 when n1 )n0.
The first set of results from our calculations gives the

correspondence between the exact solution of the model
with the total energy given by eq 3, where the segrega-
tion term is neglected, and the real protein sequences.
Using our method described in the last section, we
minimized the energy of geometrical target structures
taken from PDB while keeping the composition fixed
and identical to that of real proteins. The results for
12 typical proteins are tabulated in Table 1. The first
column gives codes for the 12 proteins randomly selected
from PDB. The second column gives values for the two
letter code measure, PH0, as obtained by our minimiza-
tion procedure. The data show that the “model protein”
sequences thus obtained have a 61%-71% correspon-
dence with real proteins for the two letter code measure.
On the other hand the best random sequence (third
column) gives only a 59% correspondence. Since the

PH0 ≡ 1 -
1

L
∑
i

|Ri - Ri
real| (11)

S0 ≡ 1 - (∑i|qi - qi
real|2

∑iqi
real 2 )1/2 (12)

PH0 )
n1

2 + n0
2

(n1 + n0)
2

(13)
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model sequences are degenerate, as discussed before,
we computed all possible degenerate sequences and the
corresponding PH0 values.17 The best and the worst
correspondences with real proteins are listed in column
four. From these numerical values we conclude that,
when using the two letter code measure, PH0, even the
simple model with only the solvent exclusion term can
lead to good correspondence between our predicted
“model protein” and the real protein. On the other
hand, if we use the more stringent measure S0, which
is based on the 20 letter code, the “model protein” and
the real protein have considerably less overlap, as
shown in the fifth column of Table 1. Here the best case
is less than 50%.
The overlap is greatly improved if the segregation

term is included. This term gives an overlap parameter
S0 of 0.87 between qbideal(â ) 0) and qbideal(â ) -0.467).
This implies that the inclusion of the segregation term
will give similar energy behaviors, and we therefore do
not expect any significant changes when using the
solvent exclusion term only. On the other hand, inclu-
sion of the segregation term should improve the S0
overlap parameter with real protein sequences because
this term lifts the degeneracies in the position of amino
acid residues. Using our analytical design procedure,
we obtained the results listed in Table 2. In particular,
in comparison with Table 1, the parameters PH0 do not
change very much even though the degeneracies dis-
cussed in ref 17 have largely been lifted. When the
segregation term is included, the difference between the
best and worst limits of Table 1 decreased to around
1% only due to the lifting of the degeneracies. On the
other hand, column four of Table 2 shows clearly that
the 20 letter code measure S0 has been significantly
improved by about a factor of 2 to values ranging from
0.36 to 0.53 when the segregation term is present.
The last three columns of Table 2 give the total

energies of the 12 proteins. Column five gives the
energies for the real protein structures as computed
using the MJ matrix. Columns six and seven cor-
respond to the optimized “model protein” sequence when
the MJ matrix or equivalently the LTW model eq 1 is
used to calculate the energies. This column shows that
theoretical predictions using the MJ interaction matrix
give energies lower than those of the real proteins by
20%-42% for almost all the proteins tested. The
exception is the protein coded 1ed, for which the
predicted energy is higher than that of the true native

state by 5%. Similar behavior was found using the LTW
model, but in this case there are three proteins for which
the theory prediction gives higher energies than for the
native states. In this regard the difference between the
two theory predictions reflects the quality of the fit of
the MJ matrix as given in eq 1.
The complete data for the energy comparisons of 84

proteins with their “model” counterparts are presented
in Figure 3. The horizontal axis corresponds to the
number of monomers in a chosen protein. The vertical
axis gives the percentage difference in energies between
real proteins and the corresponding “model” or “de-
signed” proteins. Several comments concerning this
figure need to be made. First of all, the proteins
examined for this figure were chosen randomly from the
Brookhaven Protein Data Bank and we concentrated on
those proteins consisting of one chain and representing
autonomous units. An interesting feature of Figure 3
is the broad scatter of points for short proteins on an
energy difference scale along the vertical axis. From
general arguments it is clear that the energy optimiza-
tion of a structure should be much easier in nature for
shorter proteins than for longer proteins. This is why
we expect a greater similarity between real and “model”

Table 1. Values of the Overlap between Real Protein
Structures and Those of the Predictionsa

protein
code

PH0
minimized

PH0
random sequence

PH0 minimized
degeneracy limits S0

621p 65% 54% 71% g 56% 28%
1291 66% 53% 73% g 59% 27%
4mbn 62% 57% 62% 23%
144l 64% 55% 72% g 58% 26%
451c 61% 59% 61% g 59% 20%
181l 64% 56% 70% g 62% 26%
7api 64% 55% 67% g 59% 25%
6dfr 70% 55% 80% g 61% 33%
2pal 67% 58% 70% g 64% 21%
2gch 63% 56% 67% g 61% 28%
1edn 71% 53% 81% g 71% 47%
1epg 66% 51% 70% g 58% 37%
a Only the solvent exclusion term is included in the analysis.

Columns 1, protein codes from PDB; 2, the measured PH0 obtained
from the analytical predictions; 3, PH0 from random sequences;
4, the best and worst predicted PH0 values among all the
degenerate sequences; 5, the 20 letter code overlap S0.

Table 2. Values of the Overlap between Real Protein
Structures and Those of the Predictionsa

energy

protein
code

PH0
minimized

PH0
random S0

real
protein

using
MJ

using
LTW

621p 65% 54% 42% -1123 -1414 -1326
129l 67% 53% 41% -1112 -1378 -1622
4mbn 62% 57% 34% -1131 -1430 -1322
144l 66% 55% 40% -1101 -1353 -1648
451c 56% 59% 35% -395 -563 -465
181l 64% 56% 39% -1110 -1393 -1781
7api 63% 55% 36% -2572 -3376 -3037
6dfr 66% 55% 42% -993 -1184 -1174
2pal 67% 58% 35% -563 -801 -529
2gch 63% 56% 41% -1718 -2122 -2178
1edn 71% 53% 53% -113 -107 -97
1epg 62% 51% 42% -313 -382 -230
a Both the solvent exclusion and segregation terms are included

in the analysis. Columns: 1, protein codes from PDB; 2, the
measured PH0 obtained from the analytical predictions; 3, PH0
from random sequences; 4, the 20-letter code overlap S0; 5, energy
of the real protein sequence as computed using the MJ matrix; 6,
energy of the predicted sequence computed from the MJ matrix;
7, energy of the predicted sequence computed from the LTW fitting
form.

Figure 3. Percentage energy difference between real proteins
and “model” proteins versus the number of monomers in a
protein. A value of zero on the scale of the ordinate is
equivalent to 100% correspondence.
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proteins for low monomer number. This tendency is
examined in Figure 3, which shows that not all of the
short proteins chosen have good correspondence with
the related “model” proteins. A possible explanation for
the broad scatter is that the energy of a short protein
is much more sensitive to structural details such as side
chains, rigid bonds, etc. than the energy of a long
protein. Such structural details are not considered in
simple theories, and they clearly impose additional
constraints on the geometrical and energy landscapes
of a protein. For the number of interactions present in
short proteins these structural details can be expected
to give substantial deviations from the “model proteins”
that were obtained by energy minimization alone. In
contrast the large number of interactions present in long
proteins can be expected to suppress the influence of
structural details on their energies. This implies that
there should be less scatter in the energy difference
between real proteins and “model proteins” obtained
from energy minimization using simple theories in the
case of high monomer number.
In order to clarify these considerations we investi-

gated the structure of two best case scenarios (1edn,
1hpt) and two worst case scenarios (1r69, 2cym) for
short proteins. These structures are shown in Figure
4. We notice that while 1edn and 1hpt are very compact
proteins, 1r69 and 2cym have some interior cavities
related to their function (1r69 for example is an amino
terminal domain). The presence of structural cavities
is probably due to packing arrangements among the
amino acid residues. This packing constraint plays the
role of a “structural perturbation” from the “unper-
turbed” state defined by the minimal energy require-
ments of abstract point residues interacting via the MJ
matrix as used in our simple model. In contrast, for
the 1edn protein, the abundance of hydrophilic groups
leads to a very compact, energetically minimized struc-
ture where there are no “structural perturbations”.
Even though there can be other contributions to the

energy differences between “model” and real proteins,
the energy comparison with the true native structure

of real proteins clearly suggests that while energy
minimization plays an important role in protein folding,
it is definitely not the only rule that nature follows.

IV. Discussion

We have shown that the LTW model and the related
analytic procedure for the design of stable “model
proteins” leads to reasonable results which compare well
with real proteins for the two measures used.
The one point of concern in this discussion relates to

the actual fit of the MJ matrix by Li et al.9 which was
based on eq 1 and which resulted in the specific values
of the parameters {qi} used here in the analysis for
protein design. However, we recognize that there are
always some small uncertainties to any numerical fit;
hence it is useful to determine to what extent these
small uncertainties affect the predictions and conclu-
sions of sections II and III. To this purpose, we notice
that using quantities defined as δqi

j ≡ (MJ(i,j) - Ei,j)/(1
+ âqj) and then substitution of qi + δqi

j into eq 1 give
the correct values of the elements of the MJ energy
matrix, {MJ(i,j)}. This suggests that we may use δqi
) (∑j)1

20 |δqij|)/20 as a measure of the fitting quality of
the parameter qi. Obviously, the better the fit, the
smaller the value of δqi/|qi|. For the LTW fit, this
quantity is not greater than 20%. Now let us assume
that there are Lmonomers in a compact target structure
and that the errors for each parameter qi are indepen-
dent. For a compact conformation there are ∼dL(d-1)/d

“surface” monomers and there are ∼L “interior” mono-
mers. When the monomers are shuffled in order to find
the most stable sequence, as discussed in section II, the
possible difference in energy given by the LTW model
will be of the order of ∆E ∼ dL(d-1)/d〈q〉ns where 〈q〉 is
the average of the parameters {qi} and ns is close to the
average number of nearest neighbors for the “surface”
monomers. In the fit of ref 9, 〈q〉 is of the order of unity.
On the other hand, the errors in the energy due to the
small discrepancies δqi are of the order of δE ∼ δ(nb‚qb)
∼ L(〈δq〉nb/201/2) since there are 20 independent param-
eters qi. Here 〈δq〉 is the average of the quantities δqi.
Clearly, if δE ∼ ∆E, we cannot make any reasonable
predictions. From this discussion we conclude that the
use of the LTW model for our calculation is justified if

Hence, as the fitting uncertainty is at most 20%, i.e. 〈q〉/
〈δq〉 ∼ 5, our predictions should be valid for L , 500 in
2D and L , 5000 in 3D. Thus even for a 20% error in
the parameters {qi}, our procedure based on the LTW
model can still describe and make predictions for
relatively long proteins.

V. Summary

In this work we applied the model of Li, Tang, and
Wingreen9 to design “model proteins” that have mini-
mum energy for a fixed amino acid composition and a
given target structure. The model is well suited to this
procedure because it is reasonably accurate and yet
sufficiently simple for analytical or deterministic cal-
culations. Using the vector notation of section II for the
target structure and the sequence, we were able to find
a simple method which determines model protein se-
quences based on the LTW model. We estimated that
our method can be applied to protein chains with a few

Figure 4. Native protein conformations taken from the
PDB: (a) 1edn; (b) 1hpt; (c) 1r69; (d) 2cym.

L , (201/2nsnbd 〈q〉
〈δq〉)d (14)
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hundred monomers even if there are substantial errors
in the parameters {qi}. Using 84 randomly chosen real
proteins from protein data banks, we confirmed that our
predicted sequences are reasonably realistic. Further-
more, our “model protein” sequences have total energies,
as computed from the LTW model or from the original
MJ matrix, that are for most cases lower than those of
the real proteins. While several factors could be re-
sponsible for this difference, it suggests that energy
minimization is indeed important but it is not the only
factor that determines the native structure of proteins.
We have also found that the segregation term in the
LTW model plays the important role of lifting the
degeneracies of the sequence that occur when only the
solvent exclusion term is included in our calculations.
In addition, this term improves the 20 letter code
comparison between our theory and real proteins by a
major factor. On the other hand for the two letter code
overlap measure used in section III to compare with real
proteins, our predictions for the proteins examined here
are usually 10% (the best 19%) better than those
obtained by using a random sequence. As pointed out
in ref 13, one does not expect a 100% homology between
the real and the predicted sequence for the design
problem, as degeneracies and “structural perturbations”
are present. The merit of our method lies in the fact
that it is easy to use, allows analytical or partially
analytical solutions of the problem, gives simple geo-
metrical interpretation of the results, and uses es-
sentially no computer time while giving reasonable
comparisons with real proteins.
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Chercheurs et l'Aide à la Recherche de la Province du
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