
1
A
g
h
c
F
c
a
t
t
p
t
fi
s
i

t
r
h
s
d
t
c
l
d
s
t
s
e
s
f
fi
s
t
b
t

756 J. Opt. Soc. Am. B/Vol. 24, No. 4 /April 2007 Hassani et al.
Heating of microstructured optical fibers due to
absorption of the propagating light
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Numerical and analytical models of the heat transfer in gas-filled microstructured optical fibers exhibiting ma-
terial absorption of the propagating light are presented. The simulation domain is subdivided into two parts,
with finite-difference discretization used in the microstructured region and analytical expansion used in the
homogeneous cladding region. An intuitive analytical model is then developed to account for the fiber heating,
demonstrating good agreement with the numerical method. In the application to the problem of temperature
distribution in holey fibers, we find that maximal temperature rise in such fibers is a sensitive function of the
diameter-to-pitch ratio while being only weakly sensitive to the wavelength-to-pitch ratio. © 2007 Optical So-
ciety of America

OCIS codes: 060.2280, 120.6810.
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. INTRODUCTION
n unprecedented flexibility in the design of transverse
eometries makes microstructured optical fibers (MOFs)
ighly desirable for a multitude of applications in tele-
ommunication, sensing, and high-power transmission.
or a particular application, the cross section of MOFs
an incorporate various arrangements of holes, layers,
nd irregular inclusions of various materials. These fea-
ures can result in rich thermal and thermo-optic charac-
eristics of MOFs compared with conventional fibers. Our
aper studies the reduction of effective thermal conduc-
ivity and a consequent temperature increase in the gas-
lled microstructured fibers. In such fibers, a porous MOF
tructure surrounding the fiber core serves as a thermal
solation layer, resulting in the increased fiber heating.

Recently, several devices using various aspects of MOF
hermal response have been reported. Cladding-mode
esonances in hybrid polymer–silica MOF gratings,1 co-
erent resonances in periodic microfluidic MOF
tructures,2 optical birefringence in hybrid MOFs,3 and
ispersion in photonic bandgap MOFs4,5 can be efficiently
uned by temperature. Thermo-optic switching in liquid-
rystal-infiltrated MOFs6–8 and dependency of the Bril-
ouin frequency shift on temperature in germanium-
oped solid-core MOFs9 have been reported. Birefringent
olid-core MOFs can be designed to be either ultrasensi-
ive or insensitive to temperature,10–13 and thermally in-
ensitive MOFs are used in interferometers to reduce the
ffect of temperature fluctuations.14–16 The thermal phase
ensitivity of the fundamental mode of an air-core MOF is
ound to be three to six times smaller than that of SMF28
bers,17 which could be beneficial for fiber-optic gyro-
copes. Finally, transport of high-power laser pulses
hrough the hollow-core or large-mode-area MOFs has
een recently studied for applications in sensing, indus-
rial, and medical applications.

We distinguish three broad categories of the heat trans-
0740-3224/07/040756-7/$15.00 © 2
er effects related to MOFs: (a) heat transfer during the
ber-drawing process18–22; (b) effect of the ambient tem-
erature on the modal optical properties, assuming uni-
orm temperature distribution in the fiber17,23; and (c)
onuniform heating in the fiber cross section caused by
aterial absorption of the high-power light. Our study

alls into a third category and is especially relevant for
he understanding of the power capacity limitation of
igh-power-transmitting MOFs. Prior art in this area in-
ludes semianalytical analysis of heating in hollow-core
ragg fibers,24 as well as finite-element analysis of heat-

ng of the MOF-based lasers.25

To our knowledge, no simple analytical model verified
gainst a rigorous numerical method has so far been pro-
osed to describe temperature rise in the air-core or solid-
ore MOFs due to material absorption of the propagating
ight. This study is also motivated by the recent advances
n plastic MOF fabrication technology,26–28 which opens
p the possibility of relatively high-power transmission
hrough plastic fibers for medical and sensing applica-
ions where the effects of heating could be substantial. In
hat follows we start with a rigorous numerical model for

he heat transfer in MOFs and conclude by presenting a
imple intuitive analytical model for the heat transfer in
oth solid- and hollow-core MOFs.

. FORMULATION OF THE NUMERICAL
ETHOD

n this paper we consider a steady-state regime for the
eat transfer in MOFs featuring an arrangement of gas-
lled holes (Fig. 1). The governing equation for the heat
onduction across the body of the fiber is given by

− k�2T = Q, �1�

here k, T, and Q denote the thermal conductivity, tem-
erature, and heat source, respectively. A zero-flux bound-
007 Optical Society of America
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ry condition is considered on the hole boundaries, as
hermal conductivity of gases is negligible compared with
hat of a solid-fiber material:

− k � T · n = 0, �2�

here n is the unit vector normal to the hole boundary.
oreover, radiation heat transfer across the gas-filled

oles can be considered negligible compared with the heat
ux through the solid vanes adjacent to the holes. In fact,

t is easy to estimate the region of validity of this approxi-
ation. When we denote �T to be the temperature differ-

ntial across one of the holes and Tf to be the average fi-
er temperature and assume that the effective thickness
nd length of the vane are ��−d� and �, respectively,
hen the heat flux through the vane is �k��−d��T /�,
hile the radiation flux in the hole is �4��dTf

3�T. Fi-
ally, the linear approximation is valid when
��dTf

3 / �k�1−d /����1, which is well satisfied for all the
xamples in this paper, assuming room-temperature op-
ration of the fibers.

Finally, we assume that the heat is transferred to the
mbient through the circular outer fiber boundary by con-
ection described by

− k � T · n = h�T − Tambient�, �3�

here h is the heat transfer coefficient. The radiative
eat transfer can again be considered negligible because
f the insignificant temperature differences.4

The heat source is generated by the fiber material ab-
orption of the propagating light. The source is concen-
rated in the region of overlap of the modal electromag-
etic field and the region of high fiber material
bsorption. For complex fields, the heat source of a single-
ber mode normalized to P W of incoming power can be
resented as24

ig. 1. (Color online) Schematic of a cross section of a gas-filled
OF showing finite-difference and analytical expansion regions

nd various boundary conditions.
Q = P
2� Im���

�

�E�2

Re�� da · �H* � E�	 , �4�

here � is the material dielectric constant, � is the wave-
ength, and E and H are the electric and magnetic field
ectors of the propagating mode. The power normaliza-
ion integral in the denominator is extended over the fiber
ross section. Electromagnetic field components can be
alculated using any type of a vectorial mode solver. In
his paper we use the multipole method29 to obtain modal
elds and to compute the heat source [Eq. (4)].
To solve the heat transfer equation (1), we use the

nite-difference method in the microstructured region,
hich we then match at the intermediate circular inter-

ace with an analytical expansion in the uniform cladding
egion. Using analytical expansion in the large uniform fi-
er cladding considerably simplifies the solution of the
omplete heat transfer problem, allowing fine spatial dis-
retization in a relatively small microstructured region.

The finite-difference method considered in this paper is
ased on the control volume approach.30 In this method,
he physical region is discretized into the nonoverlapping
ectangular cells, and, within each cell, conservation of
nergy in the integral form is applied:

�
C

��T/�n�dC +�
S

�Q/k�dS = 0. �5�

ere C and S stand for the boundary contour and cell
rea. For the cells inside the microstructured domain,
aylor series are used to approximate the integrals in Eq.
5) to the second order of accuracy in spatial discretiza-
ion. For the cells on the boundary between the finite-
ifference and analytical domains, we first extend the dis-
retization grid somewhat into the analytical domain and
hen again use Taylor series to approximate the integrals
n Eq. (5) to the second order, while calculating the tem-
eratures on the grid points in the analytical region using
nalytical expansion. Finally, for the cells located at the
oundary of air holes, we use the boundary condition (2)
ogether with Taylor series to arrive at a second-order ac-
urate discretization of Eq. (5).

The choice of a contour where the matching between
he finite-difference method and the analytical expansion
s performed is somewhat arbitrary. In the case of a
uided mode for which the modal fields are predomi-
antly concentrated in the fiber core, the heat source will
e also localized in the core. In what follows we always
hoose the boundary between the finite-difference and the
nalytical regions to be far enough from the core region so
hat the heat source in the analytical region can be con-
idered negligible. For numerical convenience we assume
his boundary to be a circle centered at the origin. The
nalytical region then presents a homogeneous cylindri-
al shell where, in the absence of a heat source, an exact
nalytical expansion31 for the temperature distribution
an be used:
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TAN = c1 + c2 log�r� + 

m=−M,m�0

M

Am�Rb/r�m cos�m	�

+ 

m=−M,m�0

M

Bm�Rb/r�m sin�m	�, �6�

here r and 	 are the cylindrical coordinates of the spa-
ial points; Rb is the radius of the circular boundary be-
ween the numerical and the analytical regions; and c1,
2, Am, and Bm are expansion coefficients to be deter-
ined by matching the finite-difference and analytical so-

utions at the boundary. The series are truncated at a fi-
ite M, which is chosen to be large enough to achieve
onvergence. Moreover, if symmetries are present, some
f the coefficients in Eq. (6) will be 0. In what follows we
tudy the MOF with C6v symmetry. Intensity distribu-
ions of its modes exhibit two mirror symmetries with re-
pect to the x and y axes (also implemented in a finite-
ifference computational scheme). Such symmetries
ause all the sine terms and odd cosine terms to disap-
ear from the summation [Eq. (6)].
Convection boundary conditions [Eq. (3)] can be easily

ncorporated into the analytical expansion. By substitut-
ng Eq. (6) into Eq. (3) one can eliminate some of the co-
fficients to find a modified analytical expansion satisfy-
ng both Eq. (3) and the above-mentioned symmetry
onsiderations:

TAN = c2�log�r� + 
� + 

m=even,m�0

�Am��Rb/r�m + ��

+ Ãm��r/Rb�m + ��cos�m	�, �7�

here 
= �−log�Ro�−k /hRo�, �= �mkRb
m /hRo

m+1�
�Rb /Ro�m, =−�mkRo

m−1/hRb
m�− �Ro /Rb�m, and Ro is the

uter radius of the fiber.
We then enforce self-consistency of the finite-difference

nd analytical expansion descriptions on the boundary of
he two domains by minimizing the objective function us-
ng the least-squares method:

LS = 

i

�Ti
AN − Ti

FD�2. �8�

ere, TFD is a temperature on a finite-difference discreti-
ation mesh, TAN is a temperature given by the analytical
xpansion (7), and index i spans the finite-difference
esh points on the domain boundary.
Parameters c2 and Am, which minimize the objective

unction (8), can be found from a standard set of equa-
ions in the form

�LS/�c2 = 0 ⇒ 

i

�Ti
AN − Ti

FD�log�ri� = 0, �9�

�LS/�Ap = 0 ⇒ 

i

�Ti
AN − Ti

FD���Rb/ri�p

+ ��cos�p	i� = 0, �10�

�LS/�Ãp = 0 ⇒ 

i

�Ti
AN − Ti

FD���ri/Rb�p

+ �cos�p	 � = 0, �11�
i
Ti
AN − Ti

FD = c2�log�ri� + 
�

+ 

m

Am��Rb/ri�m + ��cos�m	i�

+ 

m

Ãm��ri/Rb�m + �cos�m	i� − Ti
FD,

�12�

here m= �2,4, . . . ,2M�, and i spans the points on a finite
ifference grid at the boundary with an analytical region.
e now define N as the number of finite-difference grid

oints.
Finally, to obtain temperature distribution over the fi-

er cross section, one has to solve simultaneously N
2M+1 linear equations (with an equal number of un-
nowns), where N equations result from the heat-flux
onservation in each of the finite-difference cells [Eq. (5)]
nd the other 2M+1 equations result from temperature
atching [Eq. (12)] on the boundary between the finite-

ifference and analytical domains. In other words, a lin-
ar problem in the form Cx̄= b̄ has to be solved with a
N+2M+1�� �N+2M+1� matrix C having the sparsity
attern of Fig. 2. We find that the biconjugate gradient
ethod with incomplete LU preconditioning (ILU-BCG)
orks well for this type of problem. Thus, using the ILU-
CG we can routinely handle matrices of size �300,000
300,000�, and it takes several minutes to find a solution

sing a 2 GHz desktop personal computer. To handle even
arger matrices, one can use a variant of a cyclic reduction
lgorithm adopted for boundary-value problems.32 This
llows us to work with sparse matrices of size up to
700,000�700,000�.

. TEMPERATURE DISTRIBUTION IN
ICROSTRUCTURED OPTICAL FIBERS
e use this developed method to analyze heat transfer in
solid-core MOF featuring three layers of hexagonally ar-

anged holes (see inset of Fig. 3). We assume that the

ig. 2. Typical pattern of a sparse matrix corresponding to the
eat transfer problem in microstructured fibers. First, N rows of
matrix result from N finite-difference flux conservation equa-

ions (5), and the last 2M+1 matrix rows result from
emperature-matching equations (12) on the boundary between
he finite-difference and the analytical domains.
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ber is made of material with refractive index 1.5, which
an be either silica or a polymer. For all the simulations
resented in this paper, the MOF parameters are chosen
s follows: microstructure pitch �=2 �m, outside fiber ra-
ius Ro=125 �m, convection heat transfer coefficient h
25 W/m2 K, and thermal conductivity of the fiber mate-
ial k=0.25 W/mK. After conducting detailed convergence
tudies, we choose numerical parameters to give relative
rrors in temperature smaller than 1%. These parameters
re as follows: spatial discretization size �=25 nm, posi-
ion of a matching interface between the finite-difference
nd analytical domains Rb=3.5�=7 �m, and maximal
ngular momentum M=4.
In Fig. 3 we present temperature rise with respect to

he ambient as a function of the hole diameter-to-pitch ra-
io for the fundamental mode of the MOF described above.
articularly, we compare the temperature in the center of
he fiber core (maximal temperature) to the angle-

ig. 3. (Color online) Temperature rise with respect to the am-
ient as a function of a hole diameter-to-pitch ratio for a funda-
ental mode of a MOF. Dotted curve, temperature at the fiber

enter; solid curve, temperature at the matching interface (right
utside of the microstructure region). Fiber material is glass with
.2 dB/km absorption loss, and 1 W of incoming power is as-
umed. From the figure we observe that microstructured clad-
veraged temperature on a circle of radius Rb located im-
ediately outside the microstructured region. Wave-

ength of operation is �=1.55 �m, and the heat source
enerated by the fundamental mode is concentrated in
he fiber core. In the first example the fiber material is as-
umed to be glass with 0.2 dB/km material loss. When
he hole diameter increases beyond 0.8�, the microstruc-
ured cladding becomes highly porous, hence less heat
onductive, resulting in a considerable temperature dif-
erence between the fiber core and the uniform part of the
ladding. In the inset of Fig. 3 we show the temperature
istribution in the fiber cross section when the hole diam-
ter is d=0.8�. Outside the microstructured region, tem-
erature distribution can be well approximated as being
ngle independent. Note that when the hole diameter
/��1 is small, from the heat transfer point of view the
icrostructured region starts resembling a homogeneous

ylindrical shell. In this regime, maximal temperature in
he center of a MOF will be almost identical to the one in

conventional step-index fiber with otherwise compa-
able geometrical, material, and thermal parameters. For
xample, from Fig. 3 it follows that a silica MOF fiber
ith d /�=0.98 will exhibit 0.016 K/W temperature rise

n the fiber center, while a silica step-index fiber of the
ame outside diameter will exhibit only 0.01 K/W tem-
erature rise.
As shown later, temperature rise in the uniform fiber

ladding is largely determined by the value of a heat
ransfer coefficient h characterizing heat exchange effi-
iency through the fiber’s outer boundary. On the other
and, the temperature difference between the fiber core
nd the uniform cladding is defined by the thermal con-
uctivity k of a fiber material and geometry of a micro-
tructure. In Fig. 4, the nondimensional temperature rise
k��T / Im���P� across the microstructured region is pre-
ented as a function of 1−d /� for three different values of
he normalized wavelength � /�= �0.1,0.5,1�. Given a par-
icular fiber geometry, the nondimensional temperature
llows us to plot a single universal temperature curve for
ing becomes a poor heat conductor for larger-size air holes.
ig. 4. (Color online) Temperature differential across the microstructured region as a function of 1−d /� for the three different values
f normalized wavelength � /�= �0.1,0.5,1�. Note that for the large hole diameters the temperature differential is almost independent of
he normalized wavelength while becoming weakly sensitive to it for the small hole diameters d /��0.4. Insets: heat source [Eq. (4)]
istributions due to material absorption of a fundamental core mode for two different fibers and three different wavelengths.
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ny values of the material loss and thermal conductivity.
oreover, from Fig. 4 it is seen that for the larger hole di-

meters d /��0.4 the temperature is almost independent
f the � /� ratio. To explain this behavior, we study spatial
istributions of heat sources (insets of Fig. 4) for the two
xtreme values of d /� and all three values of � /�. From
he insets we observe that, regardless of the wavelength,
or the larger d /� ratios the heat source is completely
oncentrated in the fiber core, thus leading to similar
hermal distributions. For smaller d /�, the modal field
nd a corresponding heat source become delocalized in
he microstructured region with a degree of delocalization
ensitive to the wavelength of operation. This modal be-
avior results in a complex, wavelength-dependent tem-
erature distribution.
To summarize, from Fig. 4 we conclude that for large

ole diameters d /��0.4 the temperature rise across the
icrostructured cladding is a universal function indepen-

ent of the wavelength of light with k��T / Im���P�1/ �1
d /��0.8.

. ANALYTICAL MODEL FOR THE ANGLE-
VERAGED TEMPERATURE
ISTRIBUTION
e now present a simple analytical model for the angle-

veraged temperature distribution across the MOF cross
ection, assuming that all the heat is generated in the
ore region. In such a model each layer of holes is approxi-
ated as a uniform cylinder with its own effective heat

esistivity. The temperature differential across a set of
oncentric cylinders is then written as33 �T=qZtot, where
is the total radial heat flux per unit of fiber length and

tot is the total heat resistance of a set of cylinders. The
eat resistance of a fiber cross section is then Ztot=Zcore
Zmicr+Zunif+Zconv, where Zcore, Zmicr, Zunif, and Zconv are

he heat resistance of the core, microstructured part of
he cladding, uniform part of the cladding, and outer
oundary of the fiber with convection boundary condi-
ions, respectively.

In our model, the fiber core is considered a homoge-
eous cylinder with radius Rc with a uniformly distrib-
ted heat source generating total radial flux q leaving the
ore. According to Ref. 33, heat resistance of the core is
iven by Zcore=1/4�k, where k is the thermal conductivity
f the fiber material. The uniform cladding is a cylindrical
hell with heat resistance given by Zunif=ln�Ro /Rb� /2�k,
here, as before, Ro is the fiber outer radius and Rb is the
uter radius of the microstructured region. Heat resis-
ance of the outer fiber interface with the convection
oundary condition is Zconv=1/2�hRo where h is the heat
ransfer (convection) coefficient. In what follows, we find
n analytical approximation for the resistivity of micro-
tructured cladding Zmicr.

Sixfold symmetry allows us to consider only one sixth of
he fiber cross section. In Fig. 5 we present an approxima-
ion to the elementary heat flows in the microstructured
art of the fiber. Arrows represent heat-flow paths in the
ifferent layers of holes. We define heat resistivity of a
ingle segment connecting the two closest points on a hon-
ycomb lattice as Zseg. Net heat flow across the first layer
nvolves only six segments. In the second layer there are
�2+2� segments, in the third one there are 6�4+3� seg-
ents, while in the Nth layer there are 6�2�N−1�+N�

egments. Correspondingly, the heat resistance of the
rst, second, third, and the Nth layers are Zseg/6,
Zseg/2+Zseg/2� /6, �Zseg/4+Zseg/3� /6, and �Zseg/2�N−1�
Zseg/N� /6, respectively. Finally, one obtains the net heat
esistance of a microstructured cladding by summing over
ll the Nl layers:

Zmirc =
Zseg

6 1 + 

n=2

Nl � 1

2�n − 1�
+

1

n	� �
Zseq

4
ln�Nl�.

�13�

Several models for the segment resistivity Zseg can be
eadily derived by approximating a material vane be-
ween the two holes (inset of Fig. 6) as a rectangular rod
f some effective length L and width W with Zseg=L /kW.
n all the models the length of the segment is assumed to
e L=� /�3. In model I the effective width is found di-
ectly from the area conservation as 6�W /2�L= �Ahexagone
A �, leading to

ig. 5. (Color online) Approximation to the heat flow in the mi-
rostructured part of the fiber cladding.

ig. 6. (Color online) Angle-averaged temperature rise with re-
pect to the ambient in a three-layer holey fiber. Solid curve,
nite-difference method; dashed curves, three analytical models
orresponding to the different approximations [Eqs. (14)–(16)] of
he effective thermal conductivity of microstructured cladding.
circle
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model I:Zseg = 1�k��3

2
−

�

4� d

�
�2	� . �14�

he disadvantage of model I is that in the limit of d→� it
oes not reproduce physically intuitive infinite resistivity.
o correct for this shortcoming in model II, we assume the
oles to be hexagonally shaped with the edge-to-edge dis-
ance d (see Fig. 5). From the area conservation argument
e then get

model II:Zseg = 1�k
�3

2 �1 − � d

�
�2	� , �15�

ith resistivity going to infinity for d→�. Finally, in
odel III we simply assume that W=�−d, leading to

model III:Zseg = 1��k�3�1 −
d

�
�	 , �16�

hich is the least precise of the three models as the area
onservation argument is not used in the derivation.

We now derive effective thermal conductivity of a mi-
rostructured cladding. Comparing the expression for the
eat resistance of a microstructured region [expression
13)] with that of a homogeneous shell Zmicr
ln�Rb /Rc� /2�kmicr of effective thermal conductivity kmicr

ith internal and external radii Rc=� /�3, Rb=���Nl

1��3/2+2/�3�, we find

kmicr � 2/��Zseg�, �17�

hich becomes almost an equality for Nl�2. From ex-
ression (17) we conclude that effective thermal conduc-
ivity of a microstructured region reduces considerably
hen the hole diameter approaches the pitch, thus lead-

ng to thermal isolation of the fiber core from the uniform
ladding.

Finally, we present an analytical model that describes
he effect of thermal isolation of the fiber core by micro-
tructured cladding and compare its predictions with
hose of the finite-difference method. We start by calculat-
ng the total heat flux per unit fiber length q leaving the
ber core into the microstructured cladding. From energy
onservation, total heat flux is equal to the absorbed op-
ical power in the core q=P
, where P (watts) is the
ower in the propagating mode, while 
 (inverse meters)
s the modal absorption loss coefficient. If the fiber is truly
uiding (no radiation loss), then the modal absorption loss
oefficient is defined by the imaginary part of the modal
ffective refractive index 
=Im�neff�4� /�. However, when
oth radiation and absorption losses are present, as is the
ase in a MOF with a finite microstructured cladding, the
eat flux is generated only via absorption, and the two
echanisms have to be distinguished. To obtain the cor-

ect expression for the heat flux, we first use the mode
olver on a fiber with a strictly real dielectric profile Re���
o obtain modal radiation losses �Im�neff

rad�. Then the
ode solver is used a second time on a fiber with a com-

lex dielectric profile � describing material absorption to
btain total modal transmission loss �Im�neff

rad+abs�. Fi-
ally, total heat flux generated via material absorption of
propagated light is calculated as
q = P Im�neff
rad+abs − neff

rad�4�/�. �18�

lternatively, perturbation theory expressions can be
sed to evaluate modal loss due to absorption.34 As a ref-
rence, the imaginary part of the refractive index of a
ulk material featuring absorption loss  (decibels per
eter) is Im�nbulk�=� ln�10� / �40��, where � is the wave-

ength.
Final expressions for the analytical model of the angle-

veraged temperature distribution in a microstructured
ber cross section are

T�r� = q� ln�Ro/r�

2�k
+

1

2�hRo
	 , Rb � r � Ro,

T�r� = q� ln�Rb/r�

2�kmicr
+

ln�Ro/Rb�

2�k
+

1

2�hRo
	 ,

Rc � r � Rb,

T�r� = q� 1

4�k�1 −
r2

Rc
2� +

ln�Rb/Rc�

2�kmicr
+

ln�Ro/Rb�

2�k

+
1

2�hRo
	 , 0 � r � Rc, �19�

here effective heat conductivity is defined by expression
17) and total heat flux is defined by Eq. (18).

In Fig. 6 we present a comparison of the analytical
odel [Eqs. (19)] with the angle-averaged temperature

istribution computed by the finite-difference method. We
onsider again a hexagonal solid-core MOF with three
ayers of holes and d /�=0.9, �=2 �m, �=1.55 �m. The fi-
er material is assumed to have a bulk absorption loss 
3 dB/m corresponding to that of low-optical-quality
olymers. Temperature rise is computed for 1 W of incom-
ng power. The thick solid curve in Fig. 6 corresponds to
he angle-averaged finite-difference method, while dotted
urves correspond to the three different analytical mod-
ls. Both analytical models I and II show excellent agree-
ent with finite-difference calculations, whereas model

II results only in a qualitative agreement.

. CONCLUSION
n efficient hybrid finite-difference method with analyti-
al expansion in the cladding is developed to study heat-
ng of a microstructured fiber via material absorption of
he propagating electromagnetic mode. The cladding of a
OF is divided into two regions—the microstructured re-

ion where the finite-difference discretization is used and
he homogeneous cladding where the analytical expan-
ion is exploited. Temperature on the boundary of the
nalytical and numerical domains is then matched by the
east-squares method. It is found that, for a microstruc-
ured holey fiber with a hexagonal arrangement of large
oles �d /��0.4�, temperature rise in the fiber core shows
weak dependency on the wavelength of light-to-pitch ra-

io. Moreover, in this case, temperature differential across
he microstructured cladding is found to be described by a
niversal curve k��T / Im���P�1/ �1−d /��p, p�0.8. Fi-
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ally, a simple, yet precise analytical model for the effec-
ive thermal conductivity coefficient of the microstruc-
ured cladding is developed.

M. Skorobogatiy, the corresponding author, can be
eached by e-mail at maksim.skorobogatiy@polymtl.ca.
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