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Newtonian and Non-Newtonian Models of the
Hollow All-Polymer Bragg Fiber Drawing

Elio Pone, Charles Dubois, Ning Guo, Suzanne Lacroix, and Maksim Skorobogatiy

Abstract—Profile development during the isothermal drawing
of the hollow all-polymer Bragg fibers is studied in the case when
surface tension is strong enough to cause a hole collapse. The
viscoelastic model of polymer flow is considered, and a comparison
with the simpler Newtonian and generalized Newtonian models is
made. The effects of draw ratio, draw temperature, feeding speed,
core pressurization, and mismatch of material properties in the
multilayer structure are investigated. A relation between the hole
collapse and the layers nonuniformity is presented, and their effect
on the fiber-transmission properties is investigated.

Index Terms—Bragg reflectors, fiber design and fabrication,
fiber materials, multilayers, polymers.

I. INTRODUCTION

THE MOTIVATION for this paper is the fabrication of hol-
low multilayered polymer optical fibers. Such fibers have

been demonstrated to guide electromagnetic radiation in a wide
range of frequencies from the visible to terahertz. Hollow core
fibers promise a considerable advantage over their solid core
counterparts in applications related to high-power guidance for
military, industry, and medicine, as well as infrared imaging and
sensing [1]–[7]. In such fibers, the hollow core is surrounded
by a solid multilayer structure consisting of the alternating
layers of several materials with distinct refractive indexes. In
a specific frequency range, called bandgap, a periodic dielectric
multilayer serves as an efficient mirror that confines radiation
in the hollow fiber core.

Although refractive-index contrast between layers in an all-
polymer Bragg fiber is relatively small (at most 1.3/1.7), as
demonstrated in [4], liquid core all-polymer Bragg fibers can
be designed to guide very well both TE and TM like modes,
while gas-filled all-polymer Bragg fibers can guide effectively
a TE polarized mode. We believe that fabrication simplicity and
potential biocompatibility of such fibers can be attractive for
applications in biomedical sector. Recently, our research group
has succeeded in developing two methodologies for fabrication
of multilayered all-polymer hollow preforms. One approach
uses a consecutive deposition of layers of two different poly-
mers by solvent evaporation on the inside of a rotating poly-
mer cladding tube [8]. Orthogonal solvents were found, and
solvent-evaporation process was developed for both Polymethyl
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Fig. 1. Example of a hollow Bragg fiber consisting of a 32-PMMA/PS optical
layer region surrounded by a PMMA ovecladding and a tube supercladding.

methacrylate (PMMA)/Polystyrene (PS) and Polyvinylidene
fluoride (PVDF)/Polycarbonate (PC) material combinations.
Alternative preform fabrication method uses a corolling of two
dissimilar polymer films similarly to [7], where both commer-
cial and home-made films are used. In Fig. 1, we present an
example of a hollow Bragg fiber routinely drawn in our group
consisting of a 32 PMMA/PS optical layer region surrounded
by a 32 layer PMMA ovecladding and a PMMA tube super-
cladding. Defects and delamination in the overcladding appear
during cutting of the fibers and not during drawing process.

In addition to preform geometry, profile of the drawn fiber
can be significantly influenced by the choice of various parame-
ters in the drawing process such as temperature of the furnace,
fiber draw and preform feed velocities, and pressurization of a
hollow core. The viscoelastic nature of polymeric flow is also of
importance for many of the polymer materials used in polymer
fiber fabrication (PS, for example). Previous studies on fiber
drawing have focused mainly on spinning molten threadlines
[9], [10] or drawing conventional solid optical fibers [11], [12].
Melt spinning of viscoelastic liquids is studied in [13] and [14].
Drawing of hollow fibers was first studied in [15] where the
asymptotic “thin-filament” equations were obtained, but the ef-
fects of surface tension were neglected. A more complete analy-
sis, although confined to Newtonian flow, is given in [16]–[19].

The two-stage draw process is routinely used in the fabri-
cation of the microstructured fibers. First, preforms are drawn
into canes with an outside diameter on the order of millimeters.
Second, the canes are jacketed by a supercladding and then
redrawn into the fibers with diameters on the order of hundreds
micrometers. Experiments and theoretical analysis of a thick
polymer tube drawing into canes showed that in the regime,
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when the effect of surface tension is small, the tube hole has a
tendency to expand [18]–[20]. In contrast, when drawing thin
polymer tubes, the hole collapse was always observed [16].
During the following redrawing of canes wrapped into a su-
percladding, where small features (high curvature) are present
in the preform cross section and relatively high temperatures
(low viscosity) are used, the surface-tension force can be of
importance, and it can cause a partial or even complete collapse
of the hollow microstructure. Note that the hole collapse affects
not only the ratio between the inner and outer diameters of a
fiber, but it also affects the thickness of the reflector layers, both
factors having an impact on the fiber-transmission properties.
The purpose of this paper is to characterize such a hole col-
lapse and nonuniformity in the reflector during the drawing of
the viscoelastic hollow fibers when the surface-tension effects
are nonnegligible. In particular, we investigate how the hole
collapse is affected by the control parameters in the drawing
process and how it affects the fiber transmission.

The flow parameters are temperature dependent, and the
drawing process relies on the heat transfer within the furnace.
We have chosen to take a simple point of view by considering
the isothermal drawing of the hollow fibers, thus avoiding the
heat-transfer analysis. Furthermore, the choice of an isothermal
case makes it easier for the rheological characterization of the
viscoelastic liquid. The choice of the constitutive equation relat-
ing stress to deformation is an essential difficulty in analyzing
the polymeric flow. There is always a compromise between
the generality of stress equation and the ease of solution. The
type of the process involved imposes restrictions on the class of
constitutive equations which can be considered. Fiber drawing
can be a high Deborah number process where the residence
time is comparable to the fluid relaxation time. For such a
process, the stress equation must account for the liquid memory
over the entire process time. The dependence of the viscosity on
the deformation is also an important factor in polymeric flow.
The simplest isothermal constitutive equation, which accounts
for the shear thinning of the viscosity and is valid for high
Deborah number processes, is the White-Metzner model [14],
[21]. A more general derivative of this model is considered in
this paper. All the numerical codes used in this paper can be
found at our group web site.

II. FLOW EQUATIONS AND BOUNDARY CONDITIONS

A schematic of a hollow multilayer preform profile during
drawing is shown in Fig. 2 (right). For an incompressible
axisymmetric steady flow, the equations for conservation of
mass and momentum in cylindrical coordinates are as follows:
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Fig. 2. (Left) Examples of drawing without Cr = 1 and with hollow core
collapse Cr = 0.6 for the same value of the outside fiber radius Rf

o. (Right)
Schematic of a hollow multilayer preform during drawing.

where r and z are the radial and axial coordinates, vr and vz

are the r and z components of the velocity vector v, ρ is the
constant density, p the pressure, τij is the extra stress, and g
is the gravitational acceleration. The components of the total
stress tensor ¯̄σ are

σij = −pδij + τij . (3)

The constitutive equation for τij is considered later. For these
equations, the boundary conditions must be specified. At the
interfaces between different layers, the kinematic conditions
(steady flow) are

vr = R′
jvz at r = Rj (4)

whereRj = Rj(z) denote the interfaces between layers and the
index j = 1, 2 . . . N is used to number them starting from the
inner one. The primes denote the derivative with respect to z.
Since the first and the N th interfaces are external interfaces, we
will distinguish them by denoting Ri ≡ R1 and Ro ≡ RN for
the inner and outer boundaries, respectively.

Hollow core can also be pressurized in order to control its
collapse under the action of the surface tension. In this case, at
the inner interface, the dynamic boundary conditions are

¯̄σ · ni =(γκi − Pi)ni

¯̄σ · ti =0 (5)

where γ denotes the surface-tension coefficient
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1
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is the curvature, and Pi is the hole overpressure (the constant
ambient pressure has no effect on the flow). Outward-pointing
normal at the inner boundary ni is defined as
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while

tT
i = (nz, 0,−nr) (7)

is the unit tangent vector. In a similar way, the dynamic bound-
ary conditions at the outer boundary are

¯̄σ · no = − γκono

¯̄σ · to = 0 (8)

where no, to, and κo satisfy the same equations as −ni, −ti,
and κi, respectively, with Ri replaced by Ro.

At the internal interfaces between layers, a continuous stress
and velocity and a negligible surface tension are considered. In
the axial direction, the boundary conditions are the known val-
ues of the draw (Vd) and the feed (Vf) velocities. Furthermore,
as an initial condition, the values Rj(0) are known.

III. THIN-FILAMENT EQUATIONS

One of the basic dimensionless parameters in the problem
is a ratio ε between the preform radius and the length of a
neck down region. In the case when ε � 1, a thin-filament
approximation can be used. There are two different approaches
for simplifying the equations in this case. In the first one [17],
[22], the variables are expanded as power series in ε2 and only
the dominant terms are retained in the equations. In the second
one [15], which we use in this paper, the equations are averaged
over the cross section at each value of z.

The average ϕ(z) of a variable ϕ(z) is defined as

ϕ(z) =
1

π (R2
o −R2

i )

Ro∫
Ri

2πrϕ(r, z)dr. (9)

For the axial velocity, the assumption vz = vz is made explic-
itly. It can be noted first that for a slow-varying thin filament;
R′

j � 1. Thus, by neglecting terms of the order R′
j
2, the

boundary conditions (5) and (8) take the following form:
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Multiplying the r-component of the momentum (2) by
2πr2, integrating from Ri to Ro, considering (d/dz)∫ Ro

Ri
2πr2τrzdr ≈ 0, neglecting the inertial term because of the

small value of the radial velocity and using the boundary values
of σrr given by (10), the following relation is obtained:
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Multiplying the z-component of the momentum (2) by 2πr,
integrating from Ri to Ro, using the boundary values of τrz =
σrz given by (10) and (11) and neglecting terms of relative order
R′

j
2, one finds
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where Q = π(R2
o −R2

i )vz is the constant volumetric flow rate.
This is the axial force balance equation.

Usually, in the fiber-drawing process, the inertial, capillary,
and gravitational terms are negligible compared to viscoelastic
stresses, and the axial force balance takes the simple form

[
1
vz

(
τzz − τ rr + τθθ

2

)]′
= 0. (13)

IV. CONSTITUTIVE EQUATION

The constitutive equation relates stress to deformation. For
the Newtonian fluid, it is given by

τ = 2η0D (14)

where τ is the stress tensor, η0 the viscosity, and D is the
deformation tensor. In cylindrical coordinates and for an axially
symmetric flow, the deformation tensor has the form

D =
∇v + ∇vT

2
=




∂vr

∂r 0 0
0 vr

r 0
0 0 v′z


 . (15)

Here, the components Drz = Dzr = ∂vr/∂z are neglected
because in the thin-filament approximation, they are of order
ε compared to the diagonal terms [21, p. 382]. Drawing of
multilayer fibers made of polymers exhibiting pure Newtonian
flow has been detailed in our previous work [16].

Polymeric flow is typically non-Newtonian. The first com-
plication arises from the fact that polymer viscosity depends
on kinematics of the flow and more precisely on the second
invariant of a deformation tensor defined as

IID =
√

2 trace(D ·D). (16)

From the continuity equation, one finds

∂vr

∂r
= −1

2
v′z −

A

r2
vr

r
= −1

2
v′z +

A

r2
(17)

where A = A(z) is a function discussed in more details later. In
most cases of practical importance A/r2 � v′z , and the second
invariant of a deformation tensor is simply given by

IID =
√

3v′z. (18)
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We choose the form of a deformation rate-dependent viscos-
ity as in [23]:

η(IID) =
η0

1 + (K1IID)n
(19)

where η0 is the Newtonian viscosity, K1 is a parameter with
the dimension of time, and n is a constant. This is known as the
Cross model, and it is able to describe the flow of a wide range
of non-Newtonian liquids [24]. A corresponding equation for
the stress, which is also known as the generalized Newtonian
model, then becomes

τ = 2η(IID)D. (20)

In addition to having a non-Newtonian viscosity polymers
can be strongly elastic exhibiting a so-called viscoelastic flow.
Effect of elasticity can be accounted for in the constitutive equa-
tion by adding the time derivative of the stress tensor. As the
drawing of the hollow Bragg fibers involves large displacement
gradients in the axial direction, in this case, the time derivative
of the stress tensor must be replaced by a special time derivative
known as the convected time derivative, and the corresponding
viscoelastic model is called nonlinear [21]. In this paper, we
tackle the simplest of the nonlinear viscoelastic models called
the White–Metzner model [21], [23]

τ + λ(IID)
∇
τ= 2η(IID)D (21)

where deformation rate-dependent parameter λ is called the
relaxation time (unit s), and

∇
τ is a convected time derivative

of the stress tensor defined as [21]

∇
τ=

∂τ

∂t
+ v · ∇τ −∇v · τ − τ · ∇vT (22)

where the superscript T denotes the transpose vector. The form
of λ(IID) considered by us is the one presented in [23].

λ(IID) =
λ0

1 +K2IID
(23)

where λ0 andK2 are constant parameters with the dimension of
time. This particular form of the relaxation time is used because
it avoids the infinite values of extensional viscosity and because
it has been successful in describing the λ(IID) curves for a
wide range of viscoelastic liquids [23].

For an axially symmetric flow in cylindrical coordinates
and for the steady-state regime, the components of (21) take
the form
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It is seen that the viscoelastic model is much more complex
than the generalized Newtonian model, because the constitutive
equation is a differential equation for τ .

V. AXIAL VELOCITY

We define Rf
i and Rf

o to be the inside and outside radii of
the drawn hollow fiber while Rp

i and Rp
o are the corresponding

radii of the hollow preform. A parameter that relates preform
and fiber dimensions is a drawdown ratio Dd which is defined
as a ratio of the outside preform diameter to that of a fiberDd =
Rp

o/R
f
o. Drawdown ratio can be set during drawing process, and

it is typically well maintained by a feedback loop from a laser
micrometer to a tractor assembly. To simplify the calculations,
instead of a fixed drawdown ratio, we consider a fixed draw
ratio defined as Dr = Vd/Vf . This makes the evaluation of the
axial velocity easier by uncoupling it from the cross-sectional
profile. If calculations for a fixed Dd are needed, the complete
solution procedure (axial velocity + cross-sectional profile)
described in what follows can still be used but in an iterative
way, that isDr must be varied until the condition for the desired
Dd is met.

A. Generalized Newtonian Model

In this section, we consider in more details the generalized
Newtonian model. Note that the Newtonian model is a subcase
of the generalized model, i.e., it can be obtained by setting
K1 = 0 in (19). When (17) is substituted into the deformation
tensor (15), which is, in turn, substituted into the constitutive
(20), and after averaging, the following is obtained:

τzz − τ rr + τθθ

2
= 3ηv′z. (25)

Thus, the axial balance (13) takes a simple form

η
v′z
vz

= C (26)

where C is a constant. This equation can be easily integrated

vz(z) = exp


lnVf +

∫ z

0
dz

η(z)∫ L

0
dz

η(z)

ln
Vd

Vf


 (27)

where L is a furnace length.

B. Viscoelastic Model

The stress components vary little in the radial direction.
We will still quantify this variation in the next section as it
is important for the development of a cross-sectional profile.
However, for the evaluation of the axial velocity, we may
simply consider

τφφ(r) ≈ τφφ (28)
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where φ represents any of the coordinates r, θ, and z. By taking
the average over cross-sectional value in both sides of (24) and
taking into account (17), (28), and the fact that A/r2 � v′z , the
constitutive equations assume the form

τxx + λ (vzτ
′
xx + v′zτxx) = − ηv′z

τzz + λ (vzτ
′
zz − 2v′zτzz) = 2ηv′z (29)

where x stands for both r and θ. Averaging of the relaxation
time and viscosity reflects the multilayer structure of a cross
section (layers with different λ0, K2, η0, K1, and n).

Equations (29) and (13) form a system of three coupled
differential equations with respect to the three unknown z
dependent functions (vz, τzz, τxx). These equations are similar
to the equations obtained in [14] for the spinning of solid thin
filaments. The main difference in our case is the fact that the
fiber fabrication consists of drawing a heated preform, and no
extrusion is present. This fact only affects the initial (z = 0)
values of τzz and τxx, although in [14], it is observed that the
axial velocity field is insensitive to these initial values. In our
case, at z = 0, there is no deformation history and the elas-
ticity term must be ignored (λ = 0 so that τzz(0) − τxx(0) =
3η(0)v′z(0)). With this slight modification, the system of (13)
and (29) can be solved by using the same iterative procedure
as the one described in [14]. Thus, the three equations are
combined into a single differential equation with respect to vz

and unknown constant C. Starting from the initial value Vf and
any value of C, a solution can be obtained along z-axis. C is
varied until the correct value of velocity vz(L) = Vd is obtained
at z = L.

VI. CROSS-SECTIONAL PROFILE

Combining (4) with (17), the following equation is obtained
for the interfaces between different layers:

(
R2

jvz

)′ = 2A. (30)

The initial values Rj(0) (the preform configuration) are known,
and the axial velocity vz(z) can be determined by an uncoupled
procedure. Thus, by integrating (30) along the z-axis, the
cross-sectional profile can be determined provided that A(z)
is known. From this equation, it also follows that the ratio of
areas of two different layers is conserved along z-axis.

Integrating the r-component of the momentum (2) fromRi to
Ro, neglecting the inertial term, and using the boundary values
of σrr given by (10), we obtain

Pi − γ

(
1
Ri

+
1
Ro

)
+

Ro∫
Ri

τrr − τθθ

r
dr = 0. (31)

This important equation can be exploited to evaluate A(z).
The integration of (30) and the evaluation of A(z) are done
simultaneously. In the following, the evaluation procedure for
A(z) is presented for both models.

A. Generalized Newtonian Model

From (15), (17), and (20), it follows that

τrr − τθθ = 4η
A

r2
. (32)

Substituting this result into (31), the following is obtained:

A =
Pi − γ

(
1

Ri
+ 1

Ro

)

4
∫ Ro

Ri

η(r)
r3 dr

. (33)

B. Viscoelastic Model

We consider a steady-state solution for which any streamline
r(z) in the material would satisfy (30) with Rj(z) replaced by
r(z). In a Lagrangian point of view, two neighboring positions
along the same streamline would then be related by

r(z + dz)2vz(z + dz) − r(z)2vz(z)
dz

= 2A(z). (34)

Suppose that at a given z, the cross-sectional profile Rj(z),
radial distributions τrr(r, z), and τθθ(r, z) and A(z), are known
and we want to advance the solution to z + dz.

We first substitute (17) into (24) to obtain

τrr + λ

[
Dτrr

Dt
− 2τrr

(
−1

2
v′z −

A

r2

)]
= 2η

(
−1

2
v′z −

A

r2

)

τθθ + λ

[
Dτθθ

Dt
− 2τθθ

(
−1

2
v′z +

A

r2

)]
= 2η

(
−1

2
v′z +

A

r2

)
.

(35)

Here, we have used the material derivative Dτxx/Dt =
vr(∂τxx/∂r) + vzτ

′
xx because it is more convenient for free

surfaces. The discretized form of the material derivative is
given by

Dτxx

Dt
=

τxx [r(z + dz)] − τxx [r(z)]
dt

(36)

where dt = dz/vz(z) and r(z + dz) and r(z) are related by
(34). Substituting (36) into (35) applied at z + dz, the stress
components in the form of relations τrr[r(z + dz), A(z + dz)],
and τθθ[r(z + dz), A(z + dz)] are obtained. Finally, by substi-
tuting these relations into (31), A(z + dz) can be evaluated.
In this way, we can advance the solution along the z-axis. At
z = 0, the elasticity term must be neglected and the relation for
A(0) is simply given by (33).

VII. HOLE COLLAPSE IN A DRAWN TUBE

In this section, we consider drawing of a single material
tube to investigate the effect of different draw parameters. As
an example, we consider drawing of a PS capillary which is
a viscoelastic polymer and is one of the materials that we
use in the fabrication of Bragg fibers. We consider a pre-
form tube with an outer radius Rp

o = 1 mm and an inner one
Rp

i = 0.8 mm. The furnace length is considered L = 20 cm.
The temperature inside the furnace is constant and equal to
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Fig. 3. Effects of the non-Newtonian viscosity and elasticity on hole collapse.
Draw parameters are T = 170 ◦C, Vf = 50 µm/s, Dr = 25, and Pi = 0 Pa.

T = 170 ◦C. Furthermore, we assume a feed velocity Vf =
50 µm/s, a draw ratio Dr = 25, and a zero hole overpressure
Pi = 0 Pa. The flow parameters of PS at T = 170 ◦C are given
in [23]: λ0 = 670 s, K2 = 1000 s, η0 = 4.791 · 105 Pa · s,
K1 = 14.7 s and n = 0.799. According to [25], the surface
tension of PS at T = 170 ◦C is γ = 0.03 N/m.

To characterize the hollow core collapse in the fiber, we
introduce a parameter defined as Cr = (Rf

i/R
f
o)/(R

p
i /R

p
o).

Thus, Cr = 0 signifies that during drawing, fiber core collapses
completely resulting in a solid core fiber, whileCr = 1 signifies
that there is no hole collapse and all the fiber dimensions can
be calculated from the corresponding preform dimensions by a
simple division by a drawdown ratio [see Fig. 2 (left)]. By solv-
ing the viscoelastic model as explained in the previous section
using the material parameters given above, the value Cr = 0.67
of core collapse is obtained, signifying a considerable hole
collapse during drawing.

We begin our analysis by investigating how the presence
of elasticity and non-Newtonian viscosity affects the hole col-
lapse. This is done by plotting the hole-collapse parameter Cr

as a function of K1 for different values of λ0, keeping the
other material parameters unchanged. Such plots are presented
in Fig. 3. Note that the case of K1 = 0, λ0 = 0 corresponds
to a Newtonian model, while the case of K1 > 0, λ0 = 0
corresponds to a generalized Newtonian model. It is seen that
the presence of both non-Newtonian (shear thinning) viscosity
and elasticity increases the hole collapse. When K1 is increas-
ing, the viscosity is decreasing, and this results in a more
pronounced hole collapse. The role of elasticity is somewhat
counterintuitive, since it is expected that its presence would
make the liquid tend to retreat to its initial position, thus
resulting in less of a hole collapse. Detailed simulations show
that this is indeed the case in a two-dimensional case when a
uniformly heated tube in the absence of any external stresses
collapses under the force of a surface tension. However, in a
three-dimensional case corresponding to fiber drawing, when
the structure is stretched and the overall stresses are higher, the
presence of elasticity works in favor of the hole collapse.

In what follows, Newtonian model assumes the PS material
parameters mentioned above with K1 = 0 and λ0 = 0, while
generalized Newtonian model only assumes that λ0 = 0.

Next, we consider the effect of the drawing process para-
meters: draw ratio, furnace temperature, feed speed, and hole
pressure. The effect of draw ratio Dr is presented in Fig. 4.

Fig. 4. Effect of the draw ratio on the hole collapse. Draw parameters are
T = 170 ◦C, Vf = 50 µm/s, and Pi = 0 Pa.

Fig. 5. Effect of the drawing temperature on the hole collapse. Draw parame-
ters are Vf = 100 µm/s, Dr = 25, and Pi = 0 Pa.

It is seen that the hole collapse is not affected significantly by
the draw ratio. Starting with preforms of the same diameter, the
draw-ratio increase leads to the reduction of a resultant fiber
cross section. As a consequence, the forces of surface tension
become more pronounced, thus favoring the hole collapse. This
is compensated by the fact that increasing the draw ratio leads
to the higher axial velocities; thus, the time a cross section
spends in a melted zone diminishes which works against the
hole collapse.

The effect of temperature is considered by using the
Williams–Landel–Ferry shift factor [26]. According to this
theory, if the values of η0, λ0, K1, and K2 are known at a
reference temperature T0 near the glass transition temperature
Tg, the corresponding values at a temperature T are given by
η0aT , λ0aT , K1aT , and K2aT , where the shift factor aT is
calculated by the following relation:

log10 aT =
−C0

1 (T − T0)
C0

2 + (T − T0)
(37)

where C0
1 and C0

2 are two constants. This formula is valid in
the range Tg to about Tg + 100. For PS (Tg = 97 ◦C) at the
reference temperature T0 = 100 ◦C, the values of constants are
C0

1 = 12.7 and C0
2 = 49.8 ◦C [26]. Since the shifted values

of η0, λ0, K1, and K2 at T = 170 ◦C are known for PS, the
unshifted ones at T0 can be evaluated and then used to calculate
polymer material parameters at any temperature. In Fig. 5, the
effect of temperature on the hole collapse is presented. It shows
that the hole collapse increases as the drawing temperature
increases. This is attributed to the decrease in the viscosity



PONE et al.: NEWTONIAN AND NON-NEWTONIAN MODELS OF THE HOLLOW ALL-POLYMER BRAGG FIBER DRAWING 4997

Fig. 6. Effect of the feeding velocity on the hole collapse. Draw parameters
are T = 170 ◦C, Dr = 25, and Pi = 0 Pa.

Fig. 7. Effect of hole overpressure on the hole collapse. Draw parameters are
T = 170 ◦C, Vf = 20 µm/s, and Dr = 25.

η(IID), which is strong enough to overcompensate the inverse
effect of λ(IID).

Next, the effect of feeding velocity is considered. In Fig. 6,
the hole-collapse parameter Cr is presented as a function of Vf

keeping all the other draw parameters constant. We note that
by increasing Vf , the hole collapse is reduced, but it cannot
be avoided. By changing strongly for small values of Vf , Cr

remains almost constant when Vf is further increased. Thus, if
one already works in the almost horizontal part of the curve in
Fig. 6, the increase of the feed velocity will not reduce further
the hole collapse. Furthermore, the increase in feed velocity
has its limits. For a given draw ratio, this limit is fixed by the
maximum draw velocity attainable by the tractor and spooler
assembly.

Finally, the effect of hole overpressure is studied. We con-
sider the case when a considerable hole collapse takes place
(Vf = 20 µm/s; minimum feed velocity in the previous graph),
and investigate if by adding some overpressure, it could be
avoided. In Fig. 7, Cr as a function of Pi is presented. We
remark that the hole collapse can be avoided by pressurizing
the hole. However, calculations show that no solution is ob-
tained if the overpressure is higher than a certain critical value
(108 Pa in this particular case), which suggests that the drawing
process cannot reach the steady-state regime. Thus, the hole
pressurization must be handled with care.

In all the cases presented above, we note small difference
between the results attained by Newtonian and generalized
Newtonian models, which however, differ considerably from
the results attained by the viscoelastic polymer flow model.

Fig. 8. Effect on the hole collapse of the viscosity and elasticity parameter
mismatch between the materials in a multilayer structure.

VIII. HOLE COLLAPSE AND LAYERS NONUNIFORMITY

IN A DRAWN BRAGG FIBER

For a multilayer fiber, solution procedure remains essentially
the same as for a single material tube. The effect of draw
parameters on the hole collapse is basically the same as in the
case of a tube. Consider, for example, a preform composed of
a bulk tube of PS containing on the inside a number of thin
alternating layers of PS and some other polymer [Fig. 2 (left)].
What is interesting to study in this case is how the material
parameters of the second polymer affect the hole collapse even
as this polymer accounts only for a small fraction of the total
volume.

As an example, we consider again the same drawing recipe as
in the previous section, that is, T = 170 ◦C, L = 20 cm, Vf =
50 µm/s, Dr = 25, and Pi = 0 Pa. The outer and inner radii
of a capillary preform are the same as in the case of a single
material tube Ro = 1 mm, Ro = 0.8 mm. What is different this
time is the cladding tube inner radius Ri = 0.9 mm and the
presence of 20 alternated layers of PS and another polymer. The
thickness of each layer is considered 5 µm; therefore, overall,
the thickness of the multilayer structure plus the cladding
tube is the same as the thickness of the tube studied before.
Thus, when the second polymer is PS, the drawing results in
a hole-collapse parameter Cr = 0.67. To investigate how Cr is
affected by the different viscosity (ηII) and elasticity (λII) of
the second polymer, we will simply vary the corresponding zero
shear-rate values ηII

0 and λII
0 .

The flow parameters of the second polymer are chosen to
correspond to the ones of PMMA, which is another polymer
used in our fabrication of polymer Bragg fibers. The flow
parameters for PMMA at T = 190 ◦C are given in [23]: λ0 =
1.039 s, K2 = 1.384 s, η0 = 1.255 · 105 Pas, K1 = 0.9088 s,
and n = 0.5776. These values, except for n, must be shifted
to 170 ◦C. This can be done in the same way as in the
previous section, considering that for PMMA at the reference
temperature T0 = 115 ◦C, the shift constants are C0

1 = 32.2
and C0

2 = 80 ◦C [26].
In Fig. 8, variation of Cr as a function of ηII

0 is presented
for different values of λII

0 . We remark that the hole collapse
depends significantly on the viscosity of the second polymer
and, to a lesser extent, on its elasticity, despite the fact that the
second polymer occupies only a small fraction (23%) of the
overall volume of a preform.
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Fig. 9. Layers nonuniformity parameter as a function of the hole collapse.

The hole collapse also affects the uniformity of the layer
thicknesses. The hole collapse typically results in a faster
reduction of an inner radius compared to an outer one. Thus,
in the drawn fiber, the inner layers will become thicker than the
outer ones even if in the preform they had the same thickness.
We will characterize the thickness nonuniformity of an initially
periodic multilayer structure by the parameter Uf defined as the
ratio between the thickness of the outer layer and the thickness
of the inner one Uf = do/di. Thus, Uf = 1 corresponds to a
uniform multilayer, while Uf < 1 signifies nonuniformity in
the multilayer structure. Since the area ratios between any two
layers are conserved along z-axis (mass conservation), the uni-
formity parameter depends only on the hole-collapse parameter
and the initial configuration of the layers in the preform. Thus,
a circular contour of radius rp in a preform translates into a
circular contour of radius rf in a fiber, which are related by

(rf)
2

=
(
rp

Dd

)2

−(
1−C2

r

)(Rp
i

Dd

)2 (Rp
o)

2−(rp)2

(Rp
o)

2−(Rp
i )

2 . (38)

Using this relation and the given preform dimensions, Uf can
be easily related to Cr. In Fig. 9, layer nonuniformity Uf is
presented for the preform configuration described above. In
the same figure, we also present the curves for N = 5 and
N = 40 layers, keeping layer thicknesses in a preform the same
as for N = 20. We remark that for a relatively high number
of layers, relation between Uf and Cr is almost linear and not
significantly sensitive to N .

IX. EFFECT OF THE HOLE COLLAPSE ON THE

BRAGG FIBER OPTICAL PROPERTIES

To understand the effect of the hole collapse on the trans-
mission properties of the resultant fibers, in Fig. 10, we
present a set of theoretical curves showing radiation losses
of the TE01 core modes for the fibers drawn with differ-
ent values of Cr while featuring the same outside diameter
Rf

o. In this example, Cr = 1 corresponds to a target hollow
core fiber nc = 1 with a strictly periodic 15 layer quarter-
wave reflector having material refractive indexes nh = 2.0,
nl = 1.5, and layer thicknesses dt

h = 0.25λt
c/

√
n2

h − n2
c =

144 nm, dt
l = 0.25 λt

c/
√
n2

l − n2
c = 224 nm, where λt

c =
1 µm. Target fibers inside and outside radii are chosen to be
Rft

i = 5 µm, Rft
o = 12.72 µm. By design, such a fiber has a

Fig. 10. Radiation loss of the bandgap guided TE01 core modes for the fibers
with different hole-collapse ratios Cr , while the same are outside radii Rft

o .
Core collapse leads to the shift of a bandgap center into the longer wavelength,
as well as to a considerable increase in the modal radiation losses. (Color
version available online at http://ieeexplore.ieee.org.)

large bandgap centered at λt
c. (For more details on the design

of high index-contrast hollow Bragg fibers, see [27].) Design
of low index-contrast hollow Bragg fibers is detailed in [4],
while influence of a core collapse on its optical properties is
discussed in [16].

In the presence of a hole collapse Cr < 1 (assuming the
same value of a drawdown ratio Dd), two major changes in the
fiber geometry happen. First, while the outside fiber radius is
fixed Rft

o , the fiber core radius is reduced Rf
i = Rft

i Cr. Second,
the thicknesses of the reflector layers become nonuniform,
increasing toward the fiber core, while, on average, layer thick-
nesses increase as ¯dh,l ∼ dt

h,l/Cr. These geometrical changes
can significantly modify fiber-transmission spectra.

Thus, as the center wavelength λc of a photonic bandgap is
proportional to the average reflector layer thickness, then, in the
presence of a hole collapse, the center of a bandgap is expected
to shift to the longer wavelengths λc ∼ λt

c/Cr (Fig. 10). We
find, however, that in the presence of a hole collapse, the
ratio of a bandgap to a midgap (relative bandgap) stays almost
unaffected. Another prominent effect of a hole collapse is on
the core mode radiation losses. From [27], radiation losses of
the bandgap guided core modes scale as (λc)p−1/(Rf

i)
p
, where

exponent p equals 3 for the TE0n modes, while for the HE,
EH, and TM modes, exponent p is in the range 1–3, depending
strongly on the fiber core size. Thus, in the presence of a hole
collapse due to the reduction of the core radius and due to a
shift in the center of a bandgap, we expect core mode radiation
loss to increase as Loss ∼ C

−(2p−1)
r , which for TE01 mode

gives Loss ∼ C−5
r . From more detailed simulations we find that

for TE01 mode, actual scaling exponent varies from −5 when
Cr � 1 to almost −7 when Cr � 0.5 signifying additional
degradation of modal confinement due to nonuniformity in the
reflector layer thicknesses.

From the analysis above, it follows that hole collapse mainly
leads to the linear shift in the bandgap frequency and a super-
linear increase in the radiation losses of the core guided modes.



PONE et al.: NEWTONIAN AND NON-NEWTONIAN MODELS OF THE HOLLOW ALL-POLYMER BRAGG FIBER DRAWING 4999

X. CONCLUSION

Drawing of multilayer hollow polymer fibers is studied using
the thin-filament approximation. The Newtonian, generalized
Newtonian, and viscoelastic models of polymer flow are con-
sidered. We have numerically characterized the surface tension
mitigated hole collapse and the closely related layer thickness
nonuniformity. We have demonstrated that by varying various
control parameters such as furnace temperature, feeding speed,
and pressurization, it is possible to reduce the hole collapse.
While the hole pressurization provides a very effective way
of compensating for the hollow core collapse, it is found that
the final fiber dimensions are very sensitive to the value of the
overpressure. Moreover, the draw process can never reach a
steady state if the overpressure is larger than a certain critical
value. Under the same draw conditions, the hole collapse is
more pronounced when non-Newtonian and viscoelastic effects
are taken into account. Finally, the hole collapse is identified
as a key parameter effecting transmission properties of the
resultant hollow Bragg fiber.
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