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Analysis of general geometric scaling perturbations
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We develop a novel perturbation theory formulation to evaluate polarization-mode dispersion (PMD) for a gen-
eral class of scaling perturbations of a waveguide profile based on generalized Hermitian Hamiltonian formu-
lation of Maxwell’s equations. Such perturbations include elipticity and uniform scaling of a fiber cross sec-
tion, as well as changes in the horizontal or vertical sizes of a planar waveguide. Our theory is valid even for
discontinuous high-index contrast variations of the refractive index across a waveguide cross section. We es-
tablish that, if at some frequencies a particular mode behaves like pure TE or TM polarized mode (polarization
is judged by the relative amounts of the electric and magnetic longitudinal energies in the waveguide cross
section), then at such frequencies for fibers under elliptical deformation its PMD as defined by an intermode
dispersion parameter t becomes proportional to group-velocity dispersion D such that t 5 lduDu, where d is a
measure of the fiber elipticity and l is a wavelength of operation. As an example, we investigate a relation
between PMD and group-velocity dispersion of a multiple-core step-index fiber as a function of the core–clad
index contrast. We establish that in this case the positions of the maximum PMD and maximum absolute
value of group-velocity dispersion are strongly correlated, with the ratio of PMD to group-velocity dispersion
being proportional to the core–clad dielectric contrast. © 2002 Optical Society of America

OCIS codes: 060.2310, 060.2400, 060.2280, 060.0060.
1. INTRODUCTION
Recently, much effort has been placed on understanding
the detrimental effects of polarization-mode dispersion
(PMD) because of the fiber imperfections in high-bit-rate
transmission systems (see Ref. 1 and references therein).
The task of quantifying PMD involves two problems.
The first problem is to understand signal propagation
along a fiber with a stochastically varying birefringence.
The second problem is to quantify the local birefringence
by assuming a particular type of perturbation and em-
ploying some method to find the new perturbed modes.
In this paper we analyze the PMD induced by geometric
imperfections that fall into a general class of scaling per-
turbations, including ellipticity or a uniform scaling of a
fiber cross section, as well as changes in the horizontal or
vertical size of a planar waveguide.

In general, PMD arises when an imperfection splits an
originally degenerate mode (such as the doubly degener-
ate linearly polarized fundamental mode of a silica fiber
or a square planar buried waveguide) into two closely
spaced modes, each carrying substantial signal power and
traveling at slightly different group velocities. A stan-
dard way to quantify local PMD is to define an intermode
dispersion parameter t, which equals the difference be-
tween the inverse of the group velocities of the newly split
modes.

There has been a significant amount of research on the
estimation of such quantities as the local birefringence in-
duced by perturbations in the fiber profile. Most of that
0740-3224/2002/122867-09$15.00 ©
study is currently a part of several standard textbooks in
the field.2–5 However, most of these treatments were
geared toward understanding low-index contrast, weakly
guiding systems such as silica optical fiber, and are not di-
rectly applicable to high contrast systems such as Bragg
fibers, photonic crystal fibers, and integrated-optics
waveguides that are emerging as an integral part of state-
of-the-art optical communication systems. Although sev-
eral approaches have been suggested for the perturbative
treatment of arbitrary fiber profiles,3,6–9 they were either
developed for specific index profile geometries or their va-
lidity deteriorated substantially with an increase in the
index contrast.

Here we derive a generalized Hermitian Hamiltonian
formulation of Maxwell’s equations in waveguides, as well
as develop a perturbation theory for the general class of
scaling perturbations that for fibers include ellipticity and
uniform scaling of an arbitrary index profile, whereas for
planar waveguides it treats the changes in their horizon-
tal or vertical sizes. Because of the Hermitian nature of
the formulation most of the results from the well-
developed perturbation theory of quantum mechanical
systems can be applied directly to light propagation in the
waveguides. Such a formulation provides an intuitive
way to understand PMD and birefringence in elliptically
perturbed fibers. In particular, we show that the regions
in which the mode is predominantly TE or TM polarized,
as judged by the magnitudes of the longitudinal electric
and magnetic energies in the fiber cross section, corre-
2002 Optical Society of America
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spond to the regions of high PMD. Moreover, within the
same limit, we show that the PMD of such a polarized
mode is proportional to the group-velocity dispersion,
which might become of concern in the case of dispersion-
compensating fibers. Finally, we demonstrate these find-
ings for the example system of a dual-core, step-index fi-
ber. We find that the point of maximum absolute value of
PMD correlates strongly with the point of maximum ab-
solute value of dispersion in the 1–200% range of core–
clad dielectric contrasts. Moreover, for small core–clad
dielectric contrasts the ratio of PMD to mode dispersion
increases proportional to such a contrast. Finally, the re-
sults of our perturbative formulation are compared to nu-
merical calculations by use of a general plane-wave ex-
pansion method10 and excellent correspondence between
theoretical and numerical results is found. Predictions
of a standard perturbation theory are shown to match our
results in a region of small core–clad dielectric contrast
whereas for large core–clad dielectric contrast substantial
deviations from the correct results are found.

2. GENERALIZED HERMITIAN
HAMILTONIAN FORMULATION OF THE
PROBLEM OF FINDING EIGENMODES OF A
WAVEGUIDE
A. Hamiltonian Formulation in b
First we derive a Hamiltonian formulation, also present
in Ref. 11, for the guided eigenfields of a generic wave-
guide that exhibits translational symmetry in the longi-
tudinal ẑ direction. We start with a well-known expres-
sion of Maxwell’s equations in terms of the transverse and
longitudinal fields.4 Assuming that the form of the fields
is

S E~x, y, z, t !

H~x, y, z, t ! D 5 S E~x, y !

H~x, y ! D exp~ibz 2 ivt ! (1)

and introducing transverse and longitudinal components
of the fields,

E 5 Et 1 Ez , Ez 5 ẑEz , Et 5 ~ ẑ 3 E! 3 ẑ, (2)

Maxwell’s equations,

¹ 3 E 5 i
v

c
mH, ¹ 3 H 5 2i

v

c
eE,

¹ • mH 5 0, ¹ • eE 5 0, (3)

take the form

]Et

]z
1 i

v

c
m ẑ 3 Ht 5 ¹tEz ,

]Ht

]z
2 i

v

c
e ẑ 3 Et 5 ¹tHz ,

(4)

ẑ~¹t 3 Et! 5 i
v

c
mHz , ẑ~¹t 3 Ht! 5 2i

v

c
eEz ,

(5)

¹t • eEt 5 2
]eEz

]z
, ¹t • mHt 5 2

]mHz

]z
.

(6)

Eliminating the Ez and Hz components from Eqs. (4) by
using Eqs. (5) and following the derivation in Refs. 11 and
12 we arrive at
2i
]

]z S Et

Ht

D 5 S 0 2
v

c
m~ ẑ 3 ! 1

c

v
¹tF1

e
ẑ • ~¹t 3 !G

v

c
e~ ẑ 3 ! 2

c

v
¹tF 1

m
ẑ • ~¹t 3 !G 0

D S Et

Ht

D . (7)

Substituting Eq. (1) into Eq. (7), and after some rearrangement employing the identity ẑ 3 (¹t • ) 5 2¹t 3 ( ẑ • ), we
arrive at the following eigenproblem:

bS 0 2ẑ 3

ẑ 3 0
D S Et

Ht

D 5 Xv

c
e 2

c

v
¹t 3 H ẑF 1

m
ẑ • ~¹t 3 !G J 0

0
v

c
m 2

c

v
¹t 3 H ẑF1

e
ẑ • ~¹t 3 !G J CS Et

Ht

D . (8)

In this form the operators at left and at right are Hermitian, thus defining a generalized Hermitian eigenproblem13 and
allowing for all the convenient properties that pertain to such a form, including real eigenvalues b for guided modes as
well as orthogonality of the modes that correspond to the different b ’s (for more discussion see Refs. 11 and 12). Defining
operators Â and B̂ as

B̂ 5 S 0 2ẑ 3

ẑ 3 0 D ,

Â 5 Xv

c
e 2

c

v
¹t 3 H ẑF 1

m
ẑ • ~¹t 3 !G J 0

0
v

c
m 2

c

v
¹t 3 H ẑF1

e
ẑ • ~¹t 3 !G J C, (9)
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and introducing Dirac notation

u c& 5 S Et

Ht
D ,

we introduce more compact notation for the generalized
eigenproblem of Eq. (8):

Âu cb& 5 bB̂u cb&, (10)

with an orthogonality condition between guided modes b
and b8 having the form

^ cbuB̂u cb8& 5
b

ubu
db,b8 . (11)

In the following we analyze perturbations that are uni-
form along the ẑ axis. If a perturbation such as a small
uniform rescaling (a uniform increase in the sizes of all
transverse dimensions of a structure by a small multipli-
cative parameter) is introduced into the system, it will
modify operator Â. Denoting the correction to an origi-
nal operator by DÂ, the new eigenvalues b̃ (up to the first
order) can be expressed with the standard perturbation
theory14:

b̃ 5 b 1
^ cbuDÂu cb&

^ cbuB̂u cb&
(12)

In general, at a particular frequency, knowledge of b
alone is not enough to characterize an eigenmode of a fi-
ber uniquely. Additional labels are needed, such as an-
gular index m, which indicates the type of angular depen-
dence. In the case of an elliptical perturbation
(equivalent to the rescaling of the axes such that one of
them increases while the other decreases by some small
multiplicative factor), a split occurs in the doubly degen-
erate eigenmodes characterized by the same b but having
opposite angular indices m and 2m. For the case of a
doubly degenerate mode, Eq. (12) is not directly appli-
cable. Instead, the split is obtained from degenerate per-
turbation theory.14 Then, new linearly polarized nonde-
generate eigenmodes, which we denote u cb

1& and u cb
2&,

up to the phase are found to be to the first order

u cb
6& 5

1

A2
~ u cb,m& 6 u cb,2m&), (13)

and the perturbed eigenvalues are

b6 5 b 1
^ cb,muDÂu cb,m&

^ cb,muB̂u cb,m&
6

^ cb,muDÂu cb,2m&

u^ cb,muB̂u cb,m&u
.

(14)

The intermode dispersion parameter t is defined to be the
mismatch of the inverse group velocities of the perturbed
modes that can be expressed in terms of the frequency de-
rivative

t 5
1

vg
1

2
1

vg
2

5
]~b1 2 b2!

]v
5

]Dbe

]v
, (15)
where Dbe 5 (b1 2 b2). The PMD of a doubly degener-
ate mode that exhibits splitting caused by a perturbation
is defined to be proportional to t.15 The desirable condi-
tion of zero PMD at a particular frequency v then implies
a zero value of the frequency derivative of the degeneracy
split Dbe , or equivalently Dbe must be stationary at such
a frequency.

Finally, Eq. (7) permits perturbations that are, in gen-
eral, nonuniform along the ẑ axis. In this case one has to
resort to an analog of the time-dependent perturbation
theories of quantum mechanics.14

B. Hamiltonian Formulation in v
An alternative formulation of a generalized Hermitian
Hamiltonian eigenproblem in terms of v rather than b is
also possible. Following the same derivation as in Sub-
section 2.A, we can also eliminate components Ez and Hz
from Eqs. (4) by using Eqs. (6). Following an explicit
substitution of Eq. (1) into Eqs. (6) and after some ma-
nipulations, we arrive at

v

c
S 0 2ẑ 3

ẑ 3 0 D S Dt

Bt
D

5 S b

e
2

1

b
¹t

1

e
¹t • 0

0
b

m
2

1

b
¹t

1

m
¹t •

D S Dt

Bt

D , (16)

where Dt 5 eEt , Bt 5 mHt , and operators at left and at
right are Hermitian. Unfortunately, the formulation in v
for the transverse fields does not offer perturbative treat-
ment of ẑ dependent perturbations as there is no analog
of Eq. (7) for Eq. (16). However, ẑ independent perturba-
tions can be successfully treated by the same approach as
described in Subsection 2.A.

3. GENERIC PERTURBATION OF THE
DIELECTRIC PROFILE (WEAK
PERTURBATION THEORY)
We now derive an expression for the matrix elements of
the perturbation corresponding to a generic change in the
dielectric profile of a fiber. In all that follows we assume
nonmagnetic materials with m 5 1. Starting with the
definitions in Eqs. (9) for operators Â and B̂ and assum-
ing perturbations of the form ẽ 5 e 1 De, we arrive at a
modified generalized Hamiltonian eigenproblem:

~Âo 1 DÂ !u cb̃& 5 b̃B̂u cb̃&, (17)

where

DÂ 5 Xv

c
De 0

0
c

v
¹t 3 H ẑF De

e 1 De
ẑ • ~¹t 3 !G J C.

(18)

Expanding Dirac notation into an integral form we pro-
ceed with an evaluation of the matrix elements:
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^ cbuB̂u cb8& 5 E
S
dsS Et

Ht
D
b

† S 0 2ẑ 3

ẑ 3 0 D S Et

Ht
D

b8

5 E
S
dsẑ • ~Et,b* 3 Ht,b8 1 Et,b8 3 Ht,b* !,

(19)

where the integration is performed over the waveguide
cross section. Using the vector identity

a~¹ 3 b! 5 ¹~b 3 a! 1 b~¹ 3 a!, (20)

the divergence theorem, the square integrability of the
fields, and Eqs. (4) and (5), after some manipulation in-
volving integration by parts we derived
similar to the vector perturbation theories developed in
Refs. 2, 5, 7, and 16. The problem of validity of such a
form of perturbation theory in the case of high-index con-
trast systems stems from its inadequacy in treating the
field discontinuities at the perturbed interfaces of sub-
stantially dissimilar dielectrics. By literally moving the
high-index contrast interfaces the change in the dielectric
profile De becomes large in absolute value near the high-
index contrast interfaces. The eigenmodes of an unper-
turbed fiber do not constitute an adequate basis to ap-
proximate large changes of the fields in the perturbed
region and a standard perturbation theory breaks down.

With the development of integrated optics, as well as
microstructured and photonic crystal fibers, there is also
^ cbuÂou cb8& 5 E
S
dsS Et

Ht

D
b

† Xv

c
e 2

c

v
¹t 3 $ ẑ@ ẑ • ~¹t 3 !#% 0

0
v

c
2

c

v
¹t 3 H ẑF1

e
ẑ • ~¹t 3 !G J CS Et

Ht

D
b8

5
v

c
E

S
dsS Ez

Et

Hz

Ht

D
b

† S 2e 0 0 0

0 e 0 0

0 0 21 0

0 0 0 1
D S Ez

Et

Hz

Ht

D
b8

, (21)

where

b 5
^ cbuÂou cb&

^ cbuB̂u cb&
, (22)

^ cbuDÂu cb8& 5 E
S
dsS Et

Ht

D
b

† Xv

c
De 0

0
c

v
¹t 3 H ẑF De

e 1 De
ẑ • ~¹t 3 !G J CS Et

Ht

D
b8

5
v

c
E

S
dsS Ez

Et

Hz

Ht

D
b

† S eDe

e 1 De
0 0 0

0 De 0 0

0 0 0 0

0 0 0 0

D S Ez

Et

Hz

Ht

D
b8

. (23)
Given the eigenmodes of a structure, one can use Eqs.
(19), (21), and (23) to evaluate the new eigenvalues of the
eigenmodes given by Eqs. (12) and (14).

As we demonstrate later in this paper, when applied to
the problem of elliptical perturbations of a fiber, the
theory derived above gives a correct result only in the
limit of small ellipticity as well as small index changes
over the cross section of a waveguide. We, therefore, re-
fer to this form of the perturbation theory as a weak per-
turbation theory. Its form and region of applicability is
a need for a perturbation theory that is valid for arbitrary
index contrast. Some perturbation theory formulations
for arbitrary contrast are known, but most of them are
particular to some analytic geometries with sharp bound-
aries between layers.6,8,9 Although current development
of a vectorial perturbation theory3,16 might also be appli-
cable to an arbitrary index contrast, there is no detailed
discussion of that issue by the authors. In the following,
we describe a vectorial perturbation theory based on the
generalized Hermitian Hamiltonian formulation of Eqs.
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(9) and (18) for a general scaling of a structure. Our
theory is valid for an arbitrary index profile as long as the
perturbation is small.

4. GENERIC SCALING PERTURBATION OF
THE DIELECTRIC PROFILE (STRONG
PERTURBATION THEORY)
Here we develop a vector perturbation theory for the gen-
eral scaling of a waveguide refractive-index profile. We
classify a perturbation as general scaling, as depicted in
Fig. 1 if the coordinates (x, y) of the unperturbed wave-
guide can be related to the coordinates of the perturbed
waveguide (xscaled , yscaled) by

xscaled 5 x~1 1 dx!, yscaled 5 y~1 1 dy!. (24)

We start with a perturbed structure defined in a regu-
lar Euclidian coordinate system. To formulate a converg-
ing perturbation theory we perform a coordinate transfor-
mation so that in the new (generally curvilinear)
coordinate system the initially perturbed geometric struc-
ture becomes unperturbed. Then we use the modes of an
unperturbed structure to form an adequate basis set for
further expansions. Proceeding in such a way we effec-
tively substitute the problem of evaluating new fields in a
structure with shifted dielectric interfaces by a problem
with unchanged geometry but a slightly changed form of
underlying electromagnetic equations.

We start with a perturbed waveguide and a generalized
Hermitian Hamiltonian formulation [Eqs. (9), (19), and
(21)], where the derivatives in Eq. (21) should be under-
stood as the derivatives over the coordinates xscaled and
yscaled . We then transform into the coordinate system in
which a scaled waveguide becomes unperturbed using the
transformations in Eqs. (24). Thus, starting with Eq.
(21) written in scaled coordinates (xscaled , yscaled), we re-
express the same operator in terms of the unperturbed co-
ordinates (x, y). First, we note that if F is a vector field
then17

¹t,scaled 3 F 5 detS x̂ ŷ ẑ

]

]xscaled

]

]yscaled

0

Fx,scaled Fy,scaled Fz

D
5 detF x̂ ŷ ẑ

]

~1 1 dx!]x

]

~1 1 dy!]y
0

Fx Fy Fz

G
5 ¹t 3 F 2 Ô, (25)

where the operator Ô is defined in terms of hx 5 dx/(1
1 dx) and hy 5 dy/(1 1 dy) by
Ô 5 detS x̂ ŷ ẑ

hx

]

]x
hy

]

]y
0

Fx Fy Fz

D . (26)

Substituting Eqs. (25) and (26) into Eq. (21), we find

Âscaled 5 Âo 1 DÂ, (27)

where Âo has the same form as in Eq. (21) and is written
for a waveguide with an unperturbed index profile,
whereas the perturbation operator DA is

Fig. 1. General scaling perturbation defined by a scaling of co-
ordinates xscaled 5 x(1 1 dx) and yscaled 5 y(1 1 dy): (a) the par-
ticular case of dx 5 2dy corresponds to uniform elliptical pertur-
bation of a fiber, and (b) scaling perturbations can also be used to
analyze size variations of planar waveguides.
DÂ 5
c

v H ¹t 3 @ ẑ~ ẑ • Ô !# 1 Ô@ ẑ~ ẑ • ¹t 3 !# 0

0 ¹t 3 F ẑS 1

e
ẑ • Ô D G 1 ÔF ẑS 1

e
ẑ • ¹t 3 D GJ . (28)
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We assume that the eigenmodes of the unperturbed waveguide are known, and we will use them to calculate the matrix
elements in Eqs. (12) and (14) by using Eq. (28) as the perturbation.

In the following we evaluate the matrix element ^ cbuDÂu cb8& for a generic scaling perturbation characterized by hx
and hy . Using the vector identity in Eq. (20) as well as Maxwell’s equations in Eq. (8) after some manipulation involving
integration by parts, we found that the matrix elements of Eq. (28) take the form

^ cb,muDÂu cb8,m8& 5 E
S
dsS Ex

Ey

Hx

Hy

D
b

†

1
2

v

c
ehy 0 0 2~bhx 1 b8hy!

0 2
v

c
ehx bhy 1 b8hx 0

0 bhx 1 b8hy 2
v

c
hy 0

2~bhy 1 b8hx! 0 0 2
v

c
hx

2 S
Ex

Ey

Hx

Hy

D
b8

, (29)

which is valid for arbitrary geometries, including cylindrical fibers and planar rectangular waveguides.
For a cylindrically symmetric fiber the eigenmodes of the fiber are characterized by their wave vector b and a corre-

sponding angular index m so that, in cylindrical coordinates (r, u, z), the fields take the form

S E~r, t !

H~r, t ! D
b,m

5 S E~r!

H~r! D
b,m

exp~ibz 2 ivt 1 imu!. (30)

Because of this symmetry of fibers it is advantageous to operate in such cylindrical coordinates. After a change of coor-
dinates and explicit integration over angle u, Eq. (29) transforms into

^ cb,muDÂu cb8,m8& 5 E drS Er

Eu

Hr

Hu

D
b,m

†

¦

~hx 1 hy!

2
dm,m83

2
v

c
e 0 0 2~b 1 b8!

0 2
v

c
e ~b 1 b8! 0

0 ~b 1 b8! 2
v

c
0

2~b 1 b8! 0 0 2
v

c

4
1

~hx 2 hy!

2
dm,m8723

22
v

c
e 6i

v

c
e 7i

~b 2 b8!

2
2

~b 2 b8!

2

6i
v

c
e 2

v

c
e 2

~b 2 b8!

2
6i

~b 2 b8!

2

6i
~b 2 b8!

2

~b 2 b8!

2
22

v

c
6i

v

c

~b 2 b8!

2
7i

~b 2 b8!

2
6i

v

c
2

v

c

4 §
3S Er

Eu

Hr

Hu

D
b8,m8

. (31)

The form of the matrix elements suggests that generic scaling can be decomposed into uniform scaling with a scaling
parameter hs 5 (hx 1 hy)/2 and uniform ellipticity with ellipticity parameter he 5 (hx 2 hy)/2. We now address these
cases of uniform scaling and uniform ellipticity in greater detail.
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A. Uniform Scaling Perturbation
For uniform scaling, hx 5 hy 5 h, the matrix element
corresponds to the first term in Eq. (31), which implies
that uniform scaling directly couples only modes with the
same angular index, m 5 m8. In particular, the first-
order correction to the propagation constant of a mode
(b,m) that is due to uniform scaling is, by means of Eq.
(12),

Dbs 5 ^ cb,muDÂu cb,m&

5 2hE drS Er

Eu

Hr

Hu

D
b,m

†

3 1
v

c
e 0 0 2b

0
v

c
e b 0

0 b
v

c
0

2b 0 0
v

c

2 S
Er

Eu

Hr

Hu

D
b,m

5 2h
v

c
E dr~euEzu2 1 uHzu2!, (32)

where the final expression was derived with the help of
the mode orthogonality condition in Eq. (11), representa-
tions in Eqs. (19), (21), and (22) of operators A, B and ei-
genvalue b. From the expression in Eq. (32) we see that
the shift in the propagation constant of the mode that is
due to uniform scaling is proportional to the time-average
longitudinal (magnetic and electric) energy in the cross
section of a structure.

Another interesting and independent result about the
change in the propagation constant of a mode under uni-
form scaling is that its frequency derivative is propor-
tional to the group-velocity dispersion of the mode. To
derive this result, we consider a dispersion relation for
some mode of the waveguide, b 5 f(v). From the form
of Eq. (8), it is obvious that, if we uniformly rescale all the
transverse dimensions in a system by a factor of (1
1 d), the new b̃ 5 b 1 Dbs for the same v will satisfy
b̃ 5 $ f@v(1 1 d)#/(1 1 d)%. Expanding this expression
in a Taylor series and collecting terms of the same order
in d, we derive expressions for Dbs valid up to second or-
der in d 2:

Dbs 5 dFv
]b

]v
2 bG . (33)

Taking the derivative of Eq. (33) with respect to v, we ob-
tain up to second order in d 2:
]Dbs

]v
5 dv

]2b

]v2 5 2ldD~v!, (34)

where D(v) 5 (v2/2pc)(]2b/]v2) is the group-velocity
dispersion of the mode.

B. Uniform Ellipticity Perturbation
For uniform ellipticity, hx 5 2hy 5 h, the matrix ele-
ment corresponds to the second term in Eq. (31). It
shows that uniform ellipticity directly couples only modes
with angular momentum states different by 2, i.e., m
5 m8 6 2. In particular, for the case of an m 5 1 dou-
bly degenerate mode, PMD arises because of the
ellipticity-induced split between the originally degenerate
m 5 1 and m8 5 21 modes. The first-order correction
of Eq. (14) to the split in the propagation constants of
modes (b, 1) and (b,21) because of uniform ellipticity be-
comes

Dbe 5 2u^ cb,1uDÂu cb,21&u

5 2h
v

c U E drS Er

Eu

Hr

Hu

D
b,1

†

3 S 2e 2ie 0 0

2ie e 0 0

0 0 21 2i

0 0 2i 1
D S Er

Eu

Hr

Hu

D
b,21

U
5 2h

v

c
U E dr@~2euEzu2 1 uHzu2!

1 2Im~eEr* Eu 2 Hr* Hu!#U, (35)

where the E and the H are those of the (b, 1) mode. In
derivation we used the fact that the fields of the degener-
ate modes (b, m) and (b, 2m) can be related by

Ez
2m 5 2Ez

m, Er
2m 5 2Er

m, Eu
2m 5 Eu

m,

Hz
2m 5 Hz

m, Hr
2m 5 Hr

m, Hu
2m 5 2Hu

m,
(36)

and the total electric and magnetic energies are equal

E dre~ uEzu2 1 uEtu2! 5 E dr~ uHzu2 1 uHtu2!.

We find that, for high-index contrast profiles, Dbe is
generally dominated by the diagonal term
;u*dr@(2euEzu2 1 uHzu2)u, whereas for low-index contrast
profiles the cross terms of Eq. (35) also become important.
For any index contrast, an important conclusion about
the PMD of a structure can be drawn when either the
electric or the magnetic longitudinal energy dominates
substantially over the other. If a mode behaves like a
pure TE (*dreuEzu2 ! *druHzu2) or TM (*druHzu2

! *dreuEzu2) mode, the split that is due to uniform scal-
ing [see Eq. (32)] becomes almost identical to the split in
the degeneracy of the modes that is due to uniform ellip-
ticity perturbation [see Eq. (35)] and thus Dbs
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. Dbe . As PMD is proportional to t 5 ]Dbe /]v and
taking into account Eq. (34) for the frequency derivatives
of Dbs , we arrive at the conclusion that, for such modes,
PMD is proportional to the dispersion of a mode:

t 5 U]Dbe

]v
U . U]Dbs

]v
U 5 lduDu. (37)

5. PMD AND DISPERSION OF A DUAL-
CORE STEP-INDEX FIBER
In the following we consider a relationship between PMD
and dispersion in a dual-core step-index fiber (Fig. 2). In
particular, we are interested in how PMD behaves, com-
pared with group-velocity dispersion D, as the core–clad
index contrast increases.

An inner core of a dual-core dielectric waveguide is a
dielectric cylinder of radius R1 5 a and a variable index
n1 , whereas an outer core is a ring of index n2 5 (n1
1 ncl )/2, with inner and outer radii R2 5 5a and R3
5 6a, respectively. Two cores are separated by cladding
with an index ncl 5 1.5. For a given core index of refrac-
tion n1 , we chose the radius of an inner core a in such a
way that the absolute value of group-velocity dispersion
of a fundamental m 5 1 mode reaches its maximum at
l 5 1.55 mm.

In Fig. 3 we plot a split uDbeu 5 ubm51 2 bm521u in a
propagation constant of a doubly degenerate m 5 1 fun-
damental mode of a dual-core fiber with n1 5 2.5 that is
due to a uniform elliptical perturbation of d 5 2%. uDbeu
is measured in units of 2p/a, where a 5 0.2046 mm.
The solid curve corresponds to uDbeu as calculated by the
first-order perturbation theory in Eq. (35). For compari-
son, we computed the dispersion relations of an ellipti-
cally perturbed fiber by using iterative solutions of a gen-
eral plane-wave expansion implemented in a frequency-
domain code, i.e., MIT photonic bands (MPB).10 The
crosses correspond to uDbeu as calculated with the MPB.
Excellent agreement was observed between our first-
order perturbation theory and the MPB code across a
wide frequency range.

Fig. 2. Dual-core dielectric waveguide. The inner core is a di-
electric cylinder of radius R1 and index n1 , whereas the outer
core is a ring of index n2 with inner and outer radii R2 and R3 ,
respectively. Two cores are separated by cladding with an index
ncl .
Defining the PMD parameter De 5 t/(ld), we know
from the discussion in previous sections and Eq. (37), that
De is loosely bound from the above by the value of the
group-velocity dispersion D. Thus, for modes in which
electric and magnetic longitudinal energy densities are
comparable, De ! D, whereas for pure TE and TM modes
De . D. In Fig. 4 we plot the dispersion curves D(v)
and De(v) for different values of the index of refraction of
the core n1 5 @2.5, 2.0, 1.6#, keeping the index of refrac-
tion of the cladding fixed and equal to ncl 5 1.5. When
the core–clad index contrast is small, the PMD parameter

Fig. 3. Value of a split uDbeu 5 ubm512bm521u in a propagation
constant of a doubly degenerate m 5 1 fundamental mode of a
dual core (n1 5 2.5) fiber (see Fig. 2) that is due to a uniform el-
liptical perturbation of d 5 2%. uDbeu is measured in units of
2p/a, where a 5 0.2046 mm. The solid curve corresponds to
uDbeu as calculated by the first-order perturbation theory in Eq.
(35). The crosses correspond to uDbeu as calculated by the
frequency-domain plane-wave expansion code MPB. Excellent
agreement was observed between the first-order perturbation
theory and the frequency-domain code across a wide frequency
range.

Fig. 4. PMD parameter De (dotted curves) and group-velocity
dispersion D (solid curves) plotted for the m 5 1 fundamental
mode as a function of frequency for different core–clad index con-
trasts. The value of scaling factor a was chosen to maximize the
absolute value of the negative dispersion of the waveguide for the
m 5 1 fundamental mode at l 5 1.55 mm. For a fixed nclad
5 1.5, varying the dielectric constant of the core leads to the De
curves that approach the D curves for the high values of index
contrast.
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De is much smaller than the group-velocity dispersion D
over the whole single/mode frequency range, with the
negative minimum of D approximately coinciding with
the negative minimum of the PMD parameter. When the
index contrast is increased, the PMD parameter starts to
approach the group-velocity dispersion, and for large in-
dex contrasts the curves of the PMD parameter and the
group-velocity dispersion almost overlap.

In Fig. 5, the ratio of the PMD parameter to group-
velocity dispersion at l 5 1.55 mm, De /D, is plotted ver-
sus the ratio of the core–clad dielectric contrast to the
core dielectric constant (ecore 2 eclad)/ecore . The same
curve computed by the frequency-domain MPB code is
plotted in Fig. 5 as crosses. The results of our (strong)
perturbation theory are in excellent agreement with the
MPB calculations for small as well as large dielectric con-
trasts. We also note that for small index contrast, the ra-
tio of the PMD parameter to group-velocity dispersion is
directly proportional to the relative dielectric contrast.
For high-index contrasts, the difference between the PMD
parameter and dispersion approaches zero linearly with
the ratio of clad-to-core dielectric constants.

To demonstrate inadequacies of the standard (weak)
perturbation theory derived in Section 3, we performed
calculations of the same De /D curve using Eq. (23). As
shown in Fig. 3 as squares, this curve matches the correct
result only for the relative dielectric contrast smaller
than 10% whereas it gives erroneous results for higher di-
electric contrasts.

6. CONCLUSION
We have presented a novel perturbation theory approach
to treat general scaling perturbations in a waveguide
with an arbitrary dielectric profile. This formulation,
unlike much previous research, holds equally well for dis-

Fig. 5. Ratio of the PMD parameter and group-velocity disper-
sion De /D plotted as a function of the core–clad dielectric con-
trast relative to the dielectric constant of the core. The solid
curve corresponds to the results of a strong perturbation theory
(circles). The crosses correspond to a numerical simulation that
was performed with the frequency-domain plane-wave expansion
code MPB, and they closely match a curve that is due to a strong
perturbation theory. Weak perturbation theory (squares) pre-
dicts correct results only for the relative dielectric contrasts that
are less than ;10%.
continuous high-index contrast profiles. We have demon-
strated that the PMD of a fiber that is due to an elliptical
perturbation can be conveniently characterized by a PMD
parameter De that is proportional to intermode dispersion
parameter t. In the case of low-index contrast or a mixed
polarization mode (judged by the electric and magnetic
energies in the longitudinal direction), this PMD param-
eter is much smaller than dispersion (De ! D), whereas
for a high-index contrast or a purely polarized mode De
. D in general.

The e-mail address for M. Skorobogatiy is maksim
@omni-guide.com.
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