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Imaging at terahertz frequencies has recently received considerable attention because many materials are semitrans-
parent to THz waves. The principal challenge that impedes a widespread use of THz imaging is the slow acquisition
time of a conventional point-by-point raster scan. In this work, we present a theoretical formulation and an exper-
imental demonstration of a novel technique for fast compressionless terahertz imaging based on broadband Fourier
optics. The technique exploits k-vector/frequency duality in Fourier optics that allows the use of a single-pixel detector
to perform angular scans along a circular path, while the broadband spectrum is used to scan along the radial di-
mension in Fourier domain. The proposed compressionless image reconstruction technique (hybrid inverse trans-
form) requires only a small number of measurements that scales linearly with an image’s linear size, thus
promising real-time acquisition of high-resolution THz images. Additionally, our imaging technique handles equally
well and on an equal theoretical footing amplitude contrast and phase contrast images, which makes this technique
useful for many practical applications. A detailed analysis of the technique’s advantages and limitations is presented,
and its place among other existing THz imaging techniques is clearly identified. © 2018 Optical Society of America under
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1. INTRODUCTION

The terahertz frequency range (0.1–10 THz, wavelengths of
3 mm–30 μm) has received considerable attention over the years,
thanks to the prospect of numerous advanced imaging applica-
tions benefiting from the fact that many materials are semitrans-
parent to THz waves (for example, polymers, plastic packaging,
paper, etc.) [1,2]. Moreover, unlike X-rays, THz radiation is non-
ionizing, thus posing no risks to living beings. Many applications
have been demonstrated in various applied fields such as security
[3], biomedical [4], pharmaceutical [5], food industry [6], and art
conservation [7]. Despite all the interest and potential, many chal-
lenges remain that impede the widespread use of THz imaging.

One of the main limiting factors is the acquisition time of a
THz image. Currently, spectral imaging is done using THz time-
domain spectroscopy (THz-TDS) systems. The emitted THz
pulse contains multiple frequencies and the detection is based
on a time-domain sampling of the electric field, which provides
direct access, through frequency Fourier transform, to the ampli-
tude and the phase of the picosecond pulse.

There are two main types of broadband THz detectors: 1) THz
photoconductive antennas (THz-PCA) [8] and 2) THz detection
based on electro-optic sampling (EOS) in nonlinear crystals [9].
Both techniques are highly sensitive, but the THz-PCA generally
performs better at frequencies below 3 THz with a higher signal-to-
noise (SNR) ratio thanks to the use of lock-in amplifiers and single

pixel detectors. On the other hand, EOS has a better sensitivity at
higher frequencies [9–11], but lacks the ability to use lock-in
amplification when used together with CCD arrays. For spectral
imaging, both methods share many similar challenges.

The first challenge is the slow time-domain pulse sampling
typically based on a mechanical optical delay line. A potential sol-
ution to this problem is an asynchronous optical sampling that
allows to forgo mechanical delay line and features repetition rates
of several kHz [12]. However, this method is expensive
because it uses two synchronized femtosecond lasers. A cheaper
solution can be the use of fast rotary optical delay lines. These
generally come either in a prism [13–16] or a mirror [17–21]
configuration.

The second challenge is the single-pixel nature of the THZ-
PCA detectors. Some attempts were made recently to integrate
several antennas on the same semiconductor chip [22–25]. For
example, in [23], the authors demonstrated a one-dimensional
(1D) linear array of 15 pixels that was able to reduce the acquis-
ition time from 9 h to 36 min. However, low THz signals were
reported and were mainly attributed to focusing optics that are
complicated to manufacture. Additionally, dense integration of
multiple antennas on a chip is problematic due to crosstalk
and interference between them. In the EOS technology, on
the other hand, it is possible to replace the single-pixel photodiode
by a charge-coupled device (CCD) [26]. However, due to the
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impossibility of integrating lock-in amplifiers into the imaging
setup, the loss in signal is severe, thus requiring additional data
post-processing such as the dynamic subtraction technique [27]
or the averaging over multiple frames.

Together, the two above-mentioned challenges are currently
the major limiting factors that prevent the proliferation of
THz spectral imaging to real-time imaging applications. With
a single pixel detector, spectral imaging experiments are generally
performed by physically moving the sample in the focal plane of
focusing optics. When performing time-domain sampling using
an optical delay line (based on a linear micropositioning stage),
a single pixel with a spectral resolution of ∼1–3 GHz is typically
acquired in 1–5 s. Therefore, even a low spatial resolution 32 × 32
spectral image of 1024 pixels takes ∼1 h to acquire.

Due to the complexity in building high sensitivity THz multi-
pixel arrays, the general trend in the THz community is use ad-
vanced signal processing techniques such as compressive sensing
(CS) to reduce the number of pixels required to reconstruct an im-
age [28]. When applied to imaging, the CS theory is based on the
assumption that most objects have a sparse representation in a given
basis. This concept allows the efficient reconstruction of a N × N
image with less than N 2 measurements. Primarily in CS systems, a
single THz frequency is employed because spectral information is
typically not required. For example, using Fourier optics and a
moving single-pixel detector, a THz image of 4096 pixels was re-
constructed with only 500 measurements (12%) at a fixed fre-
quency of 0.2 THz [29]. However, this approach required
mechanical movement of the detector. In [30], the same authors
fixed the single-pixel detector and used a set of binary metal masks
in the object plane. These masks formed a basis from which a
1024-pixel image was reconstructed using 300 (29%) to 600
(59%) measurements at a fixed frequency of 0.1 THz.

The possibility of reducing the number of measurements with
the use of a single-pixel detector resulted in a spurt of activity in
CS applied to THz imaging [31–35]. Recently, researchers have
used an optically controlled silicon mask in the THz path [33] to
create patterns similar to binary metal masks. A THz image of
1024 pixels was obtained with only 63 measurements in 2 s.
In [34], the same group used an electronically controlled spatial
light modulator in the THz beam to demonstrate image acquis-
ition at 1 Hz by using 45 masks/s. In [35], THz near-field im-
aging using CS is demonstrated. Despite these advances, most of
the prior research in CS was done on reconstructing amplitude
modulated images predominantly in the form of binary metal
masks with cutouts. However, in addition to amplitude informa-
tion, practical applications frequently require phase sensing. For
example, in quality control, a scratch on the surface of a plastic
sheet will result in a weak amplitude contrast, but a strong phase
contrast.

An alternative to CS that samples spatial information at a single
THz frequency is to use broadband signals to encode spatial infor-
mation in their spectra. In fact, using time or spectral data to en-
code the information of an image is the basis of many imaging
techniques at other frequencies. For example, in optical coherence
tomography, the depth information is encoded in the spectrum
[36]. Additionally, originating from radar technology, synthetic
aperture imaging (SAI) allows the reconstruction of an image
using the echoes of a scattered field measured in time domain.
SAI was implemented in the THz range, providing submillimeter
resolution. With THz-TDS, the scattered wave can be directly

mapped in time domain and direct phase measurement of the elec-
tric waveform avoids the use of interference with a reference wave
[37]. The measurement can also be done with a CW source, where
the axial dimension is obtained by sweeping the frequency [38].

Furthermore, dimensionality reduction of an image can be
done using spectral information. The serial time-encoded ampli-
fied (STEAM) imaging system described in [39,40] is a powerful
implementation of the space-to-time image transformation. In the
STEAM system, 2D spatial information of the image is encoded
into a broadband spectrum using spatial dispersers. Then, using
dispersion-compensating fiber and Raman amplification, the
spectrum of an optical pulse is mapped into the time domain.
By using a single-pixel fast photodetector, one can then recon-
struct a 2D image at the laser repetition rate. Similar to the spatial
dispersers used in the STEAM system [41], in the THz and milli-
meter wave range, the echelon diffractive gratings have been used
to encode the image in 1D [42] or 2D [43] spatial coordinates.
The position in space is then obtained by scanning the frequency
in the spectrum.

In this work, we present a compressionless imaging technique
based on the k-space/frequency duality in Fourier optics that is
capable of reconstructing amplitude and phase contrast THz im-
ages using only a small number of measurements proportional to
the linear size of the object rather than its area. As noted in [44],
in Fourier space a spectral frequency can be equated with a spatial
frequency, which opens the possibility to substitute the sampling
over a 2D k-space by sampling over a 1D k-space and frequency.
Therefore, we first use a single pixel THz-PCA detector and a
lock-in amplifier to record the broadband time pulses at some
strategically chosen points in the Fourier space. Then, we use
a hybrid inverse transform developed in our group to reconstruct
both amplitude and phase images from the time traces collected in
Fourier space. A detailed analysis of the amplitude and phase im-
age resolution is then presented using experimental measurements
and numerical data. Unlike the techniques based on compressive
sensing theory, our method is lossless (in term of information), as
both spatial and spectral data is used for image reconstruction.
Based on solid mathematical formulation, our hybrid inverse
transform can be equally well applied both to amplitude and
phase imaging.

2. RESULTS

A. Hybrid Image Reconstruction Algorithm Using
a Generalized Fourier Optics Approach

In what follows, we first introduce a hybrid image reconstruction
algorithm based on a generalization of a Fourier optics approach
to broadband pulses. The Fourier optics theory states that, for a
fixed frequency ν, a field profile S�x; y; ν� generated by an object
that is placed in the front focal plane (object plane) of a convex
lens is Fourier-transformed according to [45]

U �ξ; η; ν� � ν

jcF

ZZ
dxdy · S�x; y; ν� exp

�
−
j2πν
cF

�xξ� yη�
�
;

(1)

where F is the lens focal distance and c is the speed of light. The
Fourier transform U �ξ; η; ν� of the original field can be measured
directly in the back focal plane of the lens (also known as the
Fourier plane), where �ξ; η� are the Cartesian coordinates of the
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observation point [see the schematics in Fig. 1(a)]. Moreover, the
original field distribution S�x; y; ν� generated by the object can be
reconstructed using the inverse Fourier transform,

S�x; y; ν� � jν
cF

ZZ
dξdη · U �ξ; η; ν� exp

�
� j2πν

cF
�xξ� yη�

�
:

(2)

The spatial frequencies, also known as components of the
k-space, are related to the �ξ; η� coordinates as

kξ �
ξν

cF
kη �

ην

cF
: (3)

When using broadband pulses, a raster scanning in the Fourier
plane [Fig. 1(b)] results in the acquisition of a hyperspectral
cube where, for each frequency, there is an image in the k-space
[Fig. 1(c)]. However, as the k-components (3) are proportional to
the frequency ν, one quickly arrives at the intriguing idea of sam-
pling the k-space using the broadband nature of the THz-TDS
pulse, rather than by a mechanical scanning of the k-space by
displacing the detector. Indeed, by fixing a detector at a fixed
position with coordinates �ξ0; η0� and using a broadband light

ν ∈ �νmin; νmax� one can sample a linear segment of the k-space
described by

kη �
η0
ξ0

kξ with kξ ∈
ξ0
cF

�νmin; νmax�: (4)

By changing the ratio η0∕ξ0, the whole k-space can be
sampled. The simplest way to change this ratio is to measure sev-
eral points along a circle of fixed radius ρ0 in the �ξ; η� plane
[Figs. 1(d) and 1(e)]. Mathematically, for further consideration,
it is more convenient to write the Fourier transform (1) in polar
coordinates as

U �~ρ; ν� � ν

jcF

ZZ
dφrdr · S�~r; ν� exp

�
−
j2πρ
cF

~r · ~ρ
�
; (5)

where ρ̄ is the position vector in the observation point in the
Fourier plane, while r̄ is the position vector in the object plane.
The inverse Fourier transform (2) is then written as

S�~r; ν� � jν
cF

ZZ
dθρdρ · U �~ρ; ν� exp

�
� j2πρ

cF
~r · ~ρ

�

�
ZZ

dθ

�
jνρ
cF

�
d
�
jνρ
cF

�
·
U �~ρ; ν�
jν∕cF

exp

�
�2π

�
j~ρ
cF

�
· ~r
�
:

(6)

As can be seen from the integral in Eq. (6), the frequency ν of
the probing wave and the distance of the detector from the origin
ρ in the Fourier plane are entering the formulation in a symmet-
rical fashion. Therefore, in principle, the integral over the spatial
coordinate in the Fourier plane ρ̄ at a fixed frequency ν0 can be
replaced by an integral over the frequency ν at a fixed radius ρ0.
In other words, instead of fixing the frequency of the probing
wave and recording the Fourier image by 2D scanning of the
point detector, we can instead only scan along a single 1D circular
path of radius ρ0, while using the broadband spectrum of the
probing pulse to sample the k-space along the radial direction.
In this way, the full 2D raster scan at a fixed frequency over
the Fourier plane is avoided and is substituted by a time-domain
scan along a single circle.

Mathematically, we, therefore, define a new hybrid inverse
transform by substituting the integration over the 2D Fourier
space in (6) by a hybrid integration over a 1D spatial coordinate
and frequency,

S̃�~r� �
ZZ

dθνdν

�
jρ20
cFν

U �ρ0; ν; θ�
�
exp

�
� j2πν

cF
~r · ~ρ0

�
: (7)

It is important to note that the image S̃�r̄� reconstructed using
Eq. (7) is different from the original image S�r̄ ; ν�, as given by the
standard inverse Fourier transform Eq. (6). Indeed, S�r̄ ; ν� is a
hyperspectral image that can be different for different frequencies
ν. In contrast, S̃�r̄� is a compounded image that incorporates in-
formation from all the frequencies sampled by the pulse.
Therefore, one must recognize that although the definition of
the hybrid inverse transform (7) is derived using physical argu-
ments, its final form should be considered as a mathematical ab-
straction, and therefore can be generalized even further as

S̃�~r� �
ZZ

dθνdν

�
jρ20
cFν

U �~ρ0; ν�
U ref �ν�

�
exp

�
� j2πν

cF
~r · ~ρ0

�
; (8)

where U ref �ν� is a certain frequency-dependent reference
function responsible for the normalization of the integral (8).

(a)

(b) (c)

(d) (e)

Fig. 1. Hybrid image reconstruction algorithm: (a) schematic of the
object plane and the Fourier plane; (b) raster scanning on a 2D
Cartesian grid in the Fourier plane; and (c) corresponding hyperspectral
k-space cube. (d) Hybrid reconstruction algorithm with a 1D circular
scan in the Fourier plane and (e) corresponding k-space inferred using
spectral information.
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As we will see later, this normalization step is crucial for correct
phase and amplitude retrieval, as well as for correct interpretation
of the image given by (8). In what follows, we demonstrate that,
in several important cases of amplitude and phase masks, the
properly normalized hybrid transform (8) recovers the original
amplitude and phase information.

B. Amplitude Masks

First, we consider the case of an object in the form of an ampli-
tude mask. The resultant image S�r̄ ; ν� is assumed to be space–
frequency separable and, in the object plane, is defined as

S�~r; ν� � S�~r�E�ν�: (9)

A typical example of this imaging modality would be a binary
mask represented by an opaque screen with a cutout pattern (im-
age) that is illuminated with a pulsed light. In this case, S�r̄� is a
function that has only two values (1 or 0) depending whether it
corresponds to the cutout or the opaque part of the screen.
Here, E�ν� is the frequency dependent field of the probing pulse.
Furthermore, as a reference function U ref �ν� in the hybrid inverse
transform (7), we take the normalized THz-TDS trace as measured
by a point detector in the center of the Fourier plane (ρ0 � 0) with
the amplitude mask still present in the object plane,

U ref �ν� � �jcF∕ν� · U �0; ν�: (10)

In practice, we first perform a time-domain measurement in
the origin of the Fourier plane, then U �0; ν� is found using a
frequency Fourier transform of the measured time-domain pulse.
Using Eq. (5), one can also write (10) as

U ref �ν� �
jcF
ν

· U �0; ν� � E�ν�
ZZ

d~rS�~r�: (11)

In this case, the hybrid inverse transform becomes

S̃�r;φ� �
ZZ

dθdν

�
ν

�
ρ0
cF

�
2 U �~ρ0; ν�
U 0�0; ν�

�
exp

�
� j2πρ0

cF
~r · ~ρ0

�
:

(12)
Note that the reference U ref �ν� is chosen to contain an addi-

tional multiplicative factor jcf ∕ν that is necessary to ensure that
the reconstructed image S̃�r;ϕ� is proportional to the original one
S�r̄ ; ν�. In fact, from the detailed mathematical analysis presented
in Supplement 1, Section 2.2, it follows that, in the case of
amplitude masks, the hybrid inverse transform results in the origi-
nal image normalized by a constant factor proportional to the area
of the image,

S̃�r;φ� � S�r;φ�RR
S�r;φ�dφrdr : (13)

As an example, in Fig. 2, we experimentally demonstrate the
imaging of a metallic mask with a cutout in the form of a
Canadian maple leaf [Fig. 2(a)]. Our intent here is to demonstrate
the reconstruction of a complex image using the broadband spec-
trum and very few pixels in the Fourier plane. For comparison, we
first perform regular imaging by recording the field distribution in
the Fourier plane by raster scanning with a point detector on a
102 × 102 mm grid with 1.5 mm resolution (4624 pixels).
At each pixel, a full-frequency spectrum is recorded, thus a com-
plete hyperspectral image is acquired. As an example, in Figs. 2(b)
and 2(c) we present image amplitude and phase distributions in
the Fourier plane at the particular frequency of 0.57 THz. The
reconstruction of the original image is then performed using the

standard inverse Fourier transform in Cartesian coordinates
[Eq. (2)]. The result contains both amplitude and phase informa-
tion for every frequency. In Fig. 2(d), we present the amplitude
distribution of the reconstructed image at 0.57 THz that corre-
sponds to the amplitude and phase distributions in the Fourier
plane presented in Figs. 2(b) and 2(c).

We now show that the hybrid inverse transform presented in
this section [Eq. (12)] can reconstruct a simple binary image with

Hybrid reconstructionRaster scan

4624 pixels 
100 %

45 pixels 
0.97 %

180 pixels 
3.9 %

20 pixels 
0.43 %

(b) (e)

(f)(c)

(d) (g)

(h) (i)

(a)
5 mm

Fig. 2. Reconstruction of a binary amplitude image in the form of a
maple leaf cutout in the metallic plate. (a) Schematic of the maple leaf
cutout. Standard raster scanning: (b) amplitude and (c) phase of the
k-space at a single frequency of 0.57 THz (4624 pixels). (d) Image
reconstruction using the standard inverse Fourier transform (2). Image
reconstruction using the hybrid inverse transform (12): (e) inferred k-space
amplitude and (f) phase distribution using spectra of the THz time traces
acquired at 180 pixels positioned along a circle of radius ρ0 � 25 mm
around the origin of the Fourier plane. (g) Image reconstructed using hy-
brid inverse transform (12) with 180 pixels, (h) 45 pixels, and (i) 20 pixels.
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considerably fewer pixels. Thus, in Figs. 2(e) and 2(f ), we present
the recorded amplitude and phase distributions of the image in
the k-space using only 180 pixels in the Fourier plane. These
points are sampled on a circle of radius ρ0 � 25 mm with the
center at the origin. The traces are acquired at equal angular in-
tervals. The data is then normalized by the complex spectrum
recorded at the origin of the k-space [expression (11)]. The
k-space at Figs. 2(e) and 2(f ) is constructed by interpreting
the spectral data as components of the k-space with Eq. (3).
As expected, this k-space compares remarkably with the k-space
obtained through raster-scanning [Figs. 2(b) and 2(c)]. Finally,
the image is reconstructed numerically using the integration in
polar coordinates of Eq. (12) [Fig. 2(g)]. Additionally, in
Figs. 2(h) and 2(i), we study the quality of the reconstructed im-
age when using a different number of pixels on the circle (between
45 and 20). We note that even when using as little as 20 pixels,
the maple leaf can still be clearly recognized.

C. Phase Masks

Second, we study the case of an object in the form of a disper-
sionless phase mask with no absorption. As an example, we can
consider imaging scratches on the surface of a transparent material
plate/film surrounded by air [see Fig. 3(a)]. In this case, the op-
tical path of the probing light in the object plane is given by

Δ�~r� � Δ0 − μ�~r� � �Lana � Lmnm� − ��nm − na�h�~r��; (14)

where na and nm are the frequency-independent refractive indices
of the air and the material, La and Lm are the distances travelled in
the air and in the material, while h�r̄� is the spatially dependent
depth of the scratch. In this case, the field distribution in the ob-
ject plane can be written as

S�~r; ν� � S�~r�E�ν� exp� j2πν�Δ0 − μ�~r��∕c�; (15)

where S�r̄� defines the slow amplitude variation of the aperture-
limited beam in the object plane, E�ν� is the frequency dependent
field of the probing pulse, and μ�r̄� � �nm − na�h�r̄� is the optical
path differential (a scratch, for example) across the object plane
that we want to image.

In the case of phase masks, we define the reference U ref �ν� in
the hybrid inverse transform (8) using a THz pulse recorded at the
origin of the k-space �ρ0 � 0� and measured using a reference
sample without the scratch �h�r̄� � 0�,

U ref �ν� � jcF · U �0; ν� � νE�ν� exp�j2πνΔ0∕c�
ZZ

d~rS�~r�:
(16)

Note that unlike in the case of [11] used for amplitude masks,
there is no division by the frequency in (16). This is an important
difference with the case of amplitude masks that is detailed in the
Supplement 1. The hybrid inverse transform (8) then becomes

S̃�r;φ� �
ZZ

dθdν

��
ρ0
cF

�
2 U �~ρ0; ν�
U 0�0; ν�

�
exp

�
� j2πρ0

cF
~r · ~ρ0

�
:

(17)

In Supplement 1, Section 2.3, we demonstrate that the imagi-
nary part of the reconstructed image (17) is directly proportional
to the optical path differential in the object plane,

ImfS̃�~r�g � −2π

c
S�~r�RR
d~rS�~r� �nm − na�h�~r�; (18)

where the term S�r̄�∕RR dr̄S�r̄� represents the slow-varying ampli-
tude of the incident aperture-limited beam that can be measured
independently (if desired) using the binary mask method de-
scribed earlier. Moreover, we find experimentally, that our imag-
ing approach given by the hybrid inverse transform (17) is so
sensitive that it can readily detect nonuniformities in the phase
distribution across the imaging plate. Such nonuniformities
can be due to defects in the substrate geometry and composition,
substrate misalignment, or even due to phase variation in the
wavefront of the probing beam. Mathematically, this means that
instead of a constant phase Δ0 used in (15), we have to assume a
somewhat nonuniform phase distribution Δ0�r̄� across the sur-
face of a reference substrate. Therefore, to improve the quality
of phase imaging, we find it beneficial to substract the phase im-
age of a pure substrate from the phase image of a phase mask
written on a similar substrate. The phase image of a substrate

5 mm

na
nm

Lm

h(r)

h (µm)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Reconstruction of a phase contrast image in the form of the
shallow engraving of the Greek letter π onto a slab of transparent plastic.
(a)–(b) Schematic of the sample na � 1, nm � 1.654, and Lm � 1 mm.
Image reconstruction using the hybrid inverse transform (17): (c) inferred
k-space amplitude and (d) phase distribution using spectra of the THz
time traces acquired at 180 pixels positioned along a circle of radius ρ0 �
25 mm around the origin of the Fourier plane. (e) Reconstructed
phase image of a substrate with engraving ImfS̃�r̄�g and (f ) without
the engraving ImfS̃0�r̄�g. (g) Improved phase image of the engraving
ImfS̃�r̄�g − ImfS̃0�r̄�g. (h) Reconstructed depth of the engraving from
Eq. (18) and a supplementary beam amplitude measurement.
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ImfS̃0�r̄�g is reconstructed in exactly the same fashion as the
phase image ImfS̃�r̄�g of a phase mask written on a similar sub-
strate, by performing exactly the same steps and using the same
reference (in both cases) as described above.

As an example, we demonstrate the imaging of the Greek letter
π inscribed as a 100 μm deep engraving in a Lm � 1 mm thick slab
of photosensitive resin (PlasCLEAR) printed using a stereolithog-
raphy 3D printer (Asiga Freeform PRO2) [Figs. 3(a) and 3(b)]. This
polymer is transparent in the THz region and has an almost con-
stant refractive index of nm � 1.654 [46]. The amplitude and the
phase distributions of the image in the k-space are presented in
Figs. 3(c) and 3(d). As in the case of the amplitude masks, these
were inferred using the k-space/frequency duality in Fourier optics.
In what follows, our goal is to map the height h�r̄� of the engraving.
First, we compute the imaginary part of the hybrid inverse trans-
form ImfS̃�r̄�g (18), which is shown in Fig. 3(e). There, the π
engraving is clearly visible, but it is surrounded by a halo due
to the somewhat nonuniform substrate used in the experiment.
Two additional steps are required to extract the absolute value
of the scratch depth h�r̄�. First, as described above, we retrieve
the phase image of the somewhat nonuniform substrate without
the scratch ImfS̃0�r̄�g, which is shown in Fig. 3(f ). Then, the phase
variation across the reference substrate is removed from the
image with the scratch by subtracting the two phase images
ImfS̃�r̄�g − ImfS̃0�r̄�g, and the result is shown in Fig. 3(g).
There, we can see that the phase image has been considerably im-
proved and only the letter π is visible. To extract the absolute value
of the scratch depth, we need to further divide the phase image
�ImfS̃�r̄�g − ImfS̃0�r̄�g� by the slow varying amplitude of the
aperture-limited beam S�r̄�∕RR dr̄S�r̄�. As mentioned earlier, this
value can be found by performing a hybrid inverse transform
[Eq. (12)] while treating the substrate without a scratch as an
amplitude mask. Finally, the height distribution can be extracted
using Eq. (18) and, as seen from the Fig. 3(h), the π symbol is an
engraving of depth around 100 μm.

3. DISCUSSION

A. Image Resolution

First, we quote the resolution of a standard Fourier optics tech-
nique when using raster scanning in the Fourier plane. In this
case, the minimal achievable resolution in the object plane follows
the Fourier transform properties. Particularly, using the Nyquist
theorem, the minimal resolution achievable is δr � 0.5∕kmax,
where kmax is the maximal spatial frequency sampled in the
k-space. When using raster scanning, the resolution is therefore
limited by the grid size Δξ in the Fourier plane. For example, in
the x direction, with the definitions in Figs. 4(a) and 4(b), the
resolution is dx � 0.25∕Δkξ � 0.25λF∕Δξ, where Δξ is the
grid size in the Fourier plane. Therefore, the resolution improves
when using smaller wavelengths and a larger grid size. In the
meantime, the grid spacing in the k-space dkx limits the field
of view (maximal image size) such as Δx � 1∕dkx � λF∕dξ,
where dξ is the grid spacing in the Fourier plane.

In the hybrid inverse transform, kmax is a function of the maxi-
mal radial position of the detector ρmax and the maximal THz
frequency νmax of the pulse, so that kmax � νmaxρmax∕cF .
Therefore, the minimal achievable resolution is set by the
Nyquist theorem to δr � 0.5cF∕νmaxρmax � 0.5λminF∕ρmax,
where λmin � c∕νmax.

In the case of amplitude masks, as shown in Supplement 1,
Section 3.1, the resolution of the hybrid inverse transform algo-
rithm [Eq. (12)] closely follows the Nyquist theorem limit
δr � 0.5λminF∕ρ0, where ρ0 is the radius of the circle along which
the time-domain data is sampled. Particularly, we find that the hy-
brid inverse transform acts as a linear smoothing filter that simply
averages the image inside a circle of radius ∼δr defined above.

In the case of phase masks, as shown in Supplement 1,
Section 3.2, the resolution of the hybrid inverse transform algo-
rithm [Eq. (17)] is somewhat more complex. First, the resolution
in the object plane is limited by the Nyquist theorem. Second, a
spatially dependent correction term proportional to the local op-
tical path variation due to surface inhomogeneity (presence of
the engraving) must be added to the resolution, δr�r̄� �
�0.5λmin � h�r̄��nm − na�� · F∕ρ0, where h�r̄� is the local height
of the scratch, while nm and na are the refractive indices of the
substrate material and surrounding air. To experimentally demon-
strate the effect of both the radial position of the detector and the
THz bandwidth on the image resolution, we present in Fig. 4 im-
aging of the paper cutout in the form of a snowflake fabricated using
a commercial paper puncher [Fig. 4(c)]. The paper cutout can be
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Fig. 4. Impact of the THz bandwidth and the radial position of the
detector on phase image resolution. Schematics of (a) the k-space and
(b) the object plane showing relations between resolutions and image sizes.
(c) Photograph of the phase mask in the form of a snowflake cutout in
very thin (∼100 μm) paper. Reconstructed phase images using Eq. (17)
with ρ0 � 25 mm and (d) νmax � 0.46 THz, (e) νmax � 0.66 THz,
and (f ) νmax � 0.86 THz. Reconstruction with ρ0 � 30 mm and
(g) νmax � 0.46 THz, (h) νmax � 0.66 THz, and (i) νmax � 0.86 THz.
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considered as a phase mask due to the subwavelength thickness of
the paper and its low absorption, therefore the hybrid inverse trans-
form in the form of Eq. (17) is used. In Figs. 4(d)–4(i), we sum-
marize our measurements by presenting the reconstructed phase
images as a function of increasing THz frequencies (νmax) and radial
positions (ρ0). From these images, we conclude that the resolution
of the system can be enhanced either by using spectrally broader
THz pulses or by positioning the detector as far from the origin
of the Fourier plane as possible. Indeed, by increasing the THz
bandwidth, the resolution of the image clearly improves, as it can
be seen qualitatively by comparing Figs. 4(d)–4(f) and 4(g)–4(i).
Moreover, by positioning the point detector at a larger radial posi-
tion ρ0, the image resolution again is enhanced, as seen by compar-
ing Figs. 4(d)–4(g), 4(e)–4(h), and 4(f)–4(i). There, the small
dendrites in the snowflake become resolvable when the radial posi-
tion ρ0 is increased. We note that the improvement in the image
resolution stops when the radial position of the detector (ρ0) is
increased beyond the size of the limiting aperture of the optical
system (lens size).

B. Advantages and Limitations of the Hybrid Image
Algorithm

Now, we would like to comment on the concept of applying the
presented imaging method in the context of industrial-strength,
real-time THz imaging systems. The main advantage of our
method is its ability to reduce significantly the image acquisition
time, while retaining the high SNR offered by the TDS-THz set-
ups based on photoconductive antennas, albeit with the loss of
spectral data. In fact, the acquisition time of our method scales
proportionally to the object linear size rather than its area, which
is the case in standard 2D raster scanning setups.

Moreover, as our system is based on the THz-TDS setup, the
same imaging system can perform both hybrid imaging of the
whole object (with the loss of the spectral data), followed by a
more precise hyperspectral imaging using a slow raster scan of
a smaller target area of an object. Both amplitude imaging modal-
ity and phase imaging modality are supported by the hybrid im-
aging setup, thus allowing efficient imaging of the objects with
high intensity contrast (amplitude modality) encountered for ex-
ample in objects with deep carvings or cutouts, as well as the low
intensity contrast (phase modality) encountered for example in
objects with small scratches or imperfections on their surface.

Additionally, we note that hybrid imaging based on the
k-space/frequency duality opens a realistic approach to completely
forgo mechanical scanning in high-speed 2D THz imaging
systems. Indeed, we note that the main reason why the standard
2D raster scanning is slow is the mechanical scanning of the sample.
Thus, with the current state of the art in micropositioning stages, a
reliable line sampling (back and forth along a single line of a ∼5 cm
long image) can be done with∼1 Hz rates. Therefore, even a mod-
estly large image containing 100 lines would take several minutes to
acquire. At this point, we are not even talking about the hyperspec-
tral imaging, but rather about imaging with a monochromatic THz
source. Within our approach, we require the acquisition of full
THz time traces along a single circle in the Fourier space.
Currently, this acquisition is accomplished using a 1D scan with
a point detector. Alternatively, mechanical scanning of a point de-
tector along a circle in the k-space can be forgone by adopting a 4f
system layout (instead of the 2f system used in our work), while
using absorbing photomasks in the Fourier plane for sampling [44].

In this arrangement, a single pixel detector would be placed at a
focal distance of the second lens, while dynamic absorbing masks
in the Fourier plane [32,33] can be used to sample along the circle
path. The fastest method, however, would be to use a circular array
of THz photoconductive antennas, which have been already dem-
onstrated by several research groups [22–25], thus resulting in a
simultaneous interrogation of all the spatial points along a circular
path in the k-space.

Finally, according to our methodology, the sampling in the sec-
ond dimension is performed via interpretation of the frequency
spectrum of a registered broadband THz pulse. Currently, a slow
linear delay line is used for the THz pulse acquisition, thus limiting
per pixel pulse acquisition rates to 1 Hz. Slow linear delay lines can
be substituted by the much faster rotary delay lines that were re-
cently demonstrated by several research groups [13–21] and that
can enhance the acquisition rate to∼10–100 Hz. In fact, mechani-
cal optical delay lines can be replaced altogether by opto-electronic
delay lines integrated into the fs lasers used in the THz-TDS sys-
tems, thus resulting in full THz spectral scanning rates of∼100 Hz
per pixel [12]. In any case, even if the optical delay line can be made
infinitely fast, the spectrum acquisition time in the THz-TDS sys-
tems is limited by the lock-in averaging time constant of ∼10 ms,
which is a minimal time required per frequency to get a reliable
intensity reading with a SNR of 20–40 dB in amplitude. Using
a modest spectral resolution of ∼30 GHz, a full THz spectrum
of up to 3 THz can then be acquired in ∼1 s. Alternatively, tunable
THz systems based on frequency difference generation in photo-
mixers can also be used to detect spectral information [47]. While
using technology similar to the photoconductive antennas, and fea-
turing spectral acquisition rates of ∼1 Hz, such signals offer con-
siderably higher SNRs and signal intensities. Therefore, the use of
linear THz antenna arrays together with fast delay lines (specifically,
opto-electronic delay lines) negates the need for any moving parts
in the THz imaging systems based on photoconductive antennas.
This would result in ∼1 Hz acquisition rates of medium resolution
(∼100 × 100), THz images with very high SNRs, either in ampli-
tude contrast or phase contrast modalities. These acquisition rates
can be further improved either by sacrificing SNRwhile using faster
optical delay lines, or not sacrificing SNR by using more powerful
(albeit considerably more expensive) broadband THz sources such
as those based on the two-color fs laser mixing and plasma filamen-
tation (see [48], for example).

3. CONCLUSION

In conclusion, we have demonstrated a hybrid Fourier imaging-
based reconstruction method that uses both spatial and spectral
information to map the spatial frequencies in the Fourier plane.
Then, using solid mathematical foundations, we develop theoreti-
cally and demonstrate numerically and experimentally the appli-
cation of several algorithms for compressionless reconstruction of
high-contrast amplitude images and low-contrast phase images.
This work is motivated by the need for a real-time, high SNR
THz imaging system capable of medium-to-high spatial resolu-
tion. We believe that the proposed hybrid spatial/spectral image
acquisition modality in the Fourier plane can enable such systems
with already existing technologies.

Funding. Canada Research Chairs; Canada Foundation for
Innovation (CFI) (Project 34633) in Ubiquitous THz Photonics.
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