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In this paper, we discuss experimental feasibility and present several system designs that could be potentially used
for generation of new frequencies by light waves interacting with moving photonic crystals. In particular, we first
theoretically analyze multiple frequency generation when incident light is reflected or diffracted by the moving
infinite 1D photonic crystals of different orientations. We then demonstrate frequency harmonics generation via
leaky waves of a moving finite-size 1D photonic crystal. Finally, we study dispersion relations of modes guided in
the hollow core of a moving waveguide. In particular, we demonstrate frequency comb generation inside of the
hollow core of a moving 2D photonic crystal waveguide. © 2016 Optical Society of America
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1. INTRODUCTION

In photonic crystals (PCs), dielectric constant exhibits periodic
variation in one, two, or in all three orthogonal directions. Over
the past 20 years, PCs became a very popular research topic,
since such periodic structures could significantly influence
the flow of light, and they were demonstrated to possess many
unique optical properties. PCs find their uses in many practical
fields, including optics [1–3], medicine [4,5], biology [6,7],
telecommunications [8], fashion industry [9,10], among
others. Most of the existing research, however, focused on
the stationary PCs, while moving PCs were somewhat over-
looked. Due to the relativistic effects, the interaction between
light and a moving photonic crystal can lead to many intriguing
phenomena akin to nonlinear effects in a stationary media. For
example, we considered oscillating PCs in [11,12]. There, it
was established that when the light of frequency ω0 is incident
onto a PC oscillating with frequency Ω, a frequency comb cen-
tered around ω0 with a comb spacing Ω is generated. Notably,
frequency combs are currently realized using nonlinear optical
processes and high-power light sources [13,14], while moving
PCs can achieve similar results using purely linear media.
Moreover, a moving PC with a negative effective refractive
index could induce an inverse Doppler effect, which was theo-
retically predicted by Veselago [15]. Recently, Chen et al.
experimentally demonstrated this phenomenon at optical
frequencies using a moving 2D PC prism [16]. Reed et al. con-
sidered a relative movement between a PC and a point light
source by displacing an oscillating dipole inside a PC and
observed the inverse Doppler effect [17,18]. Wang et al. emu-
lated a “moving” PC by displacing a periodically modulated

intensity of a standing wave generated by the two detuned
counterpropagating waves inside of the electromagnetically
induced transparency medium. Due to the relativistic
Doppler effect, the PC exhibited different bandgaps for the
light wave passing PC from the two opposite directions.
Based on this phenomenon, they developed an optical isolator
based on a moving PC [19]. The goal of this paper is to discuss
major obstacles as well as possible system design solutions
on the road of experimental realization of systems that utilize
moving periodic media.

2. EXPERIMENTAL CHALLENGES AND SYSTEM
DESIGN CONSIDERATIONS

While a number of intriguing theoretical propositions have
been made about the use of moving PCs, their experimental
demonstrations remain scarce. In part, this is due to the com-
plexity of generation as well as detection of light in such sys-
tems. In particular, due to the relativistic nature of the Doppler
effect, the generated harmonics and/or their amplitudes are
proportional to the ratio of the PC characteristic velocity to
the speed of light v

c . When using physical displacement, it is
reasonable to assume that PC velocity under normal laboratory
conditions will be limited to several kilometers/second.
This can be realized either by directly mounting a PC
onto a projectile, or placing it onto a rotating stage.
Therefore, when using direct displacement of a PC, one
expects v

c ≤
0.3–3 km∕s
3·105 km∕s ∼ 10−6–10−5. As an example, if the fun-

damental bandgap wavelength of a PC is λ0 ≈ 1 μm, a moving
PC will generate harmonics with characteristic spacing

1616 Vol. 33, No. 8 / August 2016 / Journal of the Optical Society of America B Research Article

0740-3224/16/081616-11 Journal © 2016 Optical Society of America



δλ ∼ λ0 · vc ≈ 1–10 pm. Therefore, one has to use spectromet-
ric methods capable of such a resolution to detect the effect of a
moving PC on the flow of light. While in the visible spectral
range, ∼1 pm resolution is somewhat challenging but certainly
not impossible, an additional complication is caused by the
short acquisition time due to the fast moving nature of a target.
In this respect, mounting a PC onto a rotating stage that could
provide significant linear velocity (≥300 m∕s) is probably the
most promising direct experimental approach as relatively high
v
c ∼ 10−6 can be realized together with a possibility of using the
lock-in acquisition technique due to the repetitive nature of a
signal from a rotating PC.

Alternatively, stationary PCs can be realized via creation of
periodic patterns in the photosensitive media by using optical
standing waves of the same frequency Ω, or by using acoustic
standing waves in the photoelastic media. Using slight detuning
of frequencies (δΩΩ ≪ 1) of the two waves forming standing
waves, one can realize dynamic periodic patterns that can travel
with significant velocities ∼ δΩ

Ω c, where c is the speed of light in
the photosensitive media, or a speed of sound in the photoelas-
tic media. In both cases, velocities of the dynamically generated
PCs can significantly surpass velocities of the mechanically dis-
placed PCs. A drawback of these methods, however, is the rel-
atively low refractive index contrast that can be generated in the
photosensitive or photoelastic materials. In this case, a large
number of periods should be used in order to profit from
the bandgap effects, thus resulting in large PC samples. This
might create its own experimental challenges related to the
material uniformity across the sample, as well as the necessity
of careful management of the experimental conditions at the
sample boundaries. Notwithstanding of those challenges, sev-
eral propositions have been made for the experimental realiza-
tion of dynamic periodic systems, notably [19].

Finally, another important complication in the experimental
realization of frequency generation in moving PCs is a simple
fact that a detector has to be placed outside of the body of a
moving PC. While a majority of papers on moving PCs discuss
what happens inside of a moving PC, in this paper, we rather
concentrate on various experimental scenarios of detection of
radiation emitted by the moving PCs, while using a detector
placed either completely outside of a PC or inside of a PC cavity
such as a hollow core of a PC-based waveguide. We hope that
our work could inspire future experimental research into
moving PCs and their applications.

3. PLANE WAVE INCIDENT ONTO A SINGLE
MOVING INTERFACE

We start by introducing Doppler frequency shift, when light is
reflected by a moving planar interface between the free space
and a dielectric. Consider two reference frames—a stationary
frame S with coordinates �x; y; z; t� and a moving frame S 0 with
coordinates �x 0; y 0; z 0; t 0�. The corresponding axes of the two
frames are mutually parallel, and the frame S 0 moves at a con-
stant velocity v with respect to the frame S along its x-axis. The
spacetime in the frame S 0 could be related to the space time in
the frame S via Lorentz transformation (LT),

LT:
t 0 � γ�t − vx

c2�;
x 0 � γ�x − vt�;
y 0 � y;
z 0 � z;

(1)

where c is the velocity of light in the free space, and
γ � 1ffiffiffiffiffiffiffiffiffiffiffi

1−v2∕c2
p . The inverse Lorentz transformation (ILT) is

then

ILT:

t � γ�t 0 � vx 0
c2 �;

x � γ�x 0 � vt 0�;
y � y 0;
z � z 0.

(2)

We also note that Maxwell’s field equations are invariant
under Lorentz transformation. Namely, according to [20],
Maxwell’s field equations in free space in the moving frame
S 0 and in the stationary frame S are expressed as follows:

S 0:

∇ 0 · E 0 � 0;
∇ 0 × E 0 � − ∂B 0

∂t 0 ;
∇ 0 · B 0 � 0;
∇ 0 × B 0 � ∂E 0

c2∂t 0 ;

S:

∇ · E � 0;
∇ × E � − ∂B

∂t ;
∇ · B � 0;
∇ × B � ∂E

c2∂t ;

(3)

where E 0 and B 0 are the electric and magnetic fields in the
frame S 0, and E and B are the electric and magnetic fields
in the frame S, while assuming that charge and current densities
are 0. The invariance of the Maxwell field equations under
Lorentz transformation constitutes the basis for the following
discussion. Thus, according to [20], the electric and magnetic
fields in the free space in the two reference frames are related
as follows:

E 0 � γE � �1 − γ� · �E · v� v
v2

� γ�v × B�;

B 0 � γB � �1 − γ� · �B · v� v
v2

−
γ�v × E�

c2
; (4)

where v � jvj. Equation (4) gives the fields in the frame S 0 in
terms of the fields in the frame S. Equations giving the fields in
the frame S in terms of the fields in the frame S 0 can be
obtained by interchanging primed and unprimed quantities
and replacing v by v 0, which is the velocity of the frame S
relative to the frame S 0 as measured in the frame S 0.

In the frame S, an electromagnetic plane wave with the
angular frequency ω is incident along the −x direction from
the free space onto a moving medium with refractive index
nm. In what follows we assume that the refractive index of
the free space is the same as that of air nair � 1; therefore,
we use the terms air and free space interchangeably. The
air–dielectric interface M , while being orthogonal to the x-axis
moves along the x-axis with a constant velocity v (Fig. 1). We
define a wave vector −k with a negative sign to represent an
incident plane wave, and assume that the electric field of
the incident plane wave only has a z-component. Thus, we
can write the electric field of the incident plane wave in the
stationary frame S as

E I �x; t� � ẑ · EI
Z e

i�−kx−ωt�; (5)

where EI
z is the amplitude of the electric field. Note that the

same plane wave in the moving frame S 0 could be expressed as
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E 0
I �x 0; t 0� � ẑ 0 · EI 0

z ei�−k
0x 0−ω 0t 0�: (6)

According to Eq. (4), in the case of plane waves, the ampli-
tude of the electric field in the S 0 frame is related to the am-
plitude of the electric field in the S frame as (see Appendix A)

EI 0
Z � γEI

Z

�
1 −

v
c

�
: (7)

In order to find k 0 and ω 0, we apply ILT (2) to the phase
components in Eq. (5), and then compare the resultant phase
components with their counterparts in Eq. (6). The relation-
ship between �k;ω� and �k 0;ω 0� are then as follows:

k 0 � x̂ 0
�
kγ � ωvγ

c2

�
;ω 0 � kvγ � ωγ: (8)

After substituting the plane wave dispersion relation
k � ω∕c into Eq. (8), we find

ω 0 � ωγ

�
1� v

c

�
; k 0 � kγ

�
1� v

c

�
: (9)

Equation (9) indicates that the frequency of a plane wave in
the frame S is changed by the factor γ�1� v

c� when measured in
the frame S 0. This is a well-known relativistic Doppler effect.
In the frame S 0, the interface M is stationary. Thus, the plane
wave reflected by the interface M has the following electric
field:

E 0
R�x 0; t 0� � ẑ 0 · rEI 0

Z e
i�k 0x 0−ω 0t 0�; (10)

where r � 1−nm
1�nm

is the Fresnel amplitude reflection coefficient.
In order to find the electric field of the reflected wave in the
stationary frame S, we now apply Lorentz transformation (1) to
the phase components in Eq. (10) and find the form of the
reflected plane wave in the frame S. In particular, the corre-
sponding wave vector k� and angular frequency ω� of the
reflected wave in the frame S are

ω� � ωγ2
�
1� v

c

�
2

;

k� � kγ2
�
1� v

c

�
2

: (11)

If the velocity v is much smaller than the speed of light c in
free space, the angular frequency ω� could be approximated as

ω� ≈
v∕c≪1

ω

�
1� 2v

c

�
: (12)

Equation (12) describes a classic Doppler frequency shift.
Moreover, we can also find the amplitude of the reflected
electromagnetic field in the stationary frame S by exchanging
the primed and unprimed quantities in Eqs. (A1)–(A8). Thus,
we find that the amplitude of the reflected electric field is
related to the amplitude of the incident electric field as

jE�
Rj � jE 0

Rj
�
1 −

v
c

�
γ � rγ2

�
1 −

v
c

�
2

EI
Z

� rEI
Z

�
1 −

v
c

�
∕
�
1� v

c

�
≈

v∕c≪1
rEI

Z

�
1 − 2

v
c

�
: (13)

4. PLANE WAVE INCIDENT ONTO A MOVING PC

So far, we have discussed interaction of a plane wave with a
moving planar interface. The wave vector and frequency of
the incoming light are first found in the moving reference frame
in which the interface is stationary. The reflected (or diffracted)
wave in the moving frame could then be easily found using
standard optics considerations. Then, the form of a reflected
wave in the stationary frame is found by transformation from
the moving frame S 0 back into the fixed frame S. Following the
same methodology, in what follows, we consider interaction of
a plane wave with one- or two-dimensional PCs that move
along the x-axis with a velocity v. We use the same strategy
to find the frequency of the reflected or diffracted light as
in the case of a single interface by first solving the problem
in the moving reference frame where the PC is stationary
and then transforming thus found solution into the stationary
reference frame.

A. Moving 1D PC

We first discuss reflection by a moving 1D PC consisting of a
dielectric multilayer with alternating high- and low-refractive
indices. The dielectric constant of a 1D PC is a periodic func-
tion along the x-axis, and it is homogeneous in the YOZ plane
(Fig. 2). In the frame S 0, when the plane wave with a wave
vector −k 0 is incident normally onto the multilayer, no harmon-
ics are generated in the reflection as only a single reflected wave
is generated with a wave vector k 0. Consequently, when con-
verted back into the stationary frame S, the corresponding wave
vector k� and frequency ω� would be identical to those pre-
sented in Eq. (11), thus predicting a standard Doppler shift
for the plane wave reflected from a moving PC.

B. Moving 1D PC (Transverse Orientation)

In general, a reflective diffraction grating consists of a spatially
periodic arrangement of groves inscribed onto a planar
substrate. When a plane wave is incident normally onto a

Fig. 1. Schematic of the reflection by a single moving interface.
Using ILT, a plane wave defined by �−k;ω� in the stationary frame
S is converted into �−k 0;ω 0� in the moving frame S 0 in which the
reflected and transmitted waves can be easily described using basic
optics. Then, the reflected and transmitted waves are transformed back
into the stationary frame using LT.

1618 Vol. 33, No. 8 / August 2016 / Journal of the Optical Society of America B Research Article



diffraction grating or a 1D PC in the transverse orientation, it
will be diffracted. A well-known grating equation [Eq. (14)] is
used to describe the dependence of the diffraction angle θ 0

(with respect to the x-axis) in the moving frame S 0 on the wave-
length λ 0 of the normally incident plane wave, the grating pitch
a, and the diffraction order m [21]:

a · sin θ 0
m � mλ 0: (14)

A schematic of diffraction from a moving diffraction grating or
a 1D PC is shown in Fig. 3. Following the same procedure as in
Section 3, the wave vector −k and angular frequency ω of the
plane wave in the stationary frame are converted into −k 0 and
ω 0 in the moving frame. The wave vector of diffracted waves
could then be decomposed into x 0 and y 0 components and then
transformed back into the stationary frame. Practically, assum-
ing that the electric field of the normally incident plane wave is
directed along the z-axis we write

E 0
d ;m�x 0; y 0; t 0� � ẑ 0 · E 0

d ;m · ei�k
0d
m;xx 0�k 0d

m;y y 0−ω 0t 0�;

k 0dm;x � k 0 cos θ 0
m;

k 0dm;y � k 0 sin θ 0
m: (15)

Combining Eq. (15) with Eq. (14), we find

k 0dm;y �
2πm
a

;

k 0dm;x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω 0

c

�
2

−

�
2πm
a

�
2

s
: (16)

Substituting Eq. (16) into Eq. (15), and then applying the
Lorentz transformation to the phase components of the result-
ant expression, we could find the wave vector and angular fre-
quency of the diffracted waves in the stationary frame S as
follows:

k�dm;y �
2πm
a

;

k�dm;x � γ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω 0

c

�
2

−

�
2πm
a

�
2

s
� ω 0v

c2

!
;

ω�d
m � γω 0 � vγ

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ω 0�2 −

�
2πmc
a

�
2

s
;

ω 0 � ωγ

�
1� v

c

�
: (17)

Note that for the zeroth-order diffraction (m � 0), the fre-
quency of the diffracted wave is identical to that reflected
by a moving planar interface ωγ2�1� v

c�2. For other higher-
order diffracted waves, the corresponding angular frequencies
ω�d
m (m > 0) would be confined between ωγ2�1� v

c� and
ωγ2�1� v

c�2. Finally, we note that waves of different orders dif-
fracted by the moving grating have frequencies and directions
that are only slightly (∼ v

c ) different from those of the waves
diffracted by a stationary grating [see Eq. (17)]. The same also
holds for the field amplitudes of the diffracted waves, which are
virtually the same as in the case of a stationary grating
[see Eq. (13)].

C. Harmonics Generation via Leaky Waves of a
Moving 1D PC

In Section 4.A, we discussed reflection of a plane wave from a
semi-infinite moving 1D PC and concluded that only a stan-
dard Doppler frequency shift is observed in this case. We now
demonstrate that generation of harmonics is, nevertheless, pos-
sible in a PC that is semi-infinite or finite in the y direction.
Such harmonics can be detected in the free space outside of a
PC using a stationary detector in the frame S (see Fig. 4). It is
well known that for infinite 1D PCs there exist regions of fre-
quency space called bandgaps, inside of which no delocalized
electromagnetic waves are permitted to propagate in the bulk of
a PC [1]. Within a bandgap, the modes of a 1D PC are evan-
escent, exhibiting exponential decay inside of a multilayer.
Outside of the bandgaps, the electromagnetic waves propagat-
ing in the multilayer satisfies the Bloch theorem due to discrete
translational symmetry in the x direction. In fact, even for
the semi-infinite or finite-size photonic crystals (in the z

Fig. 3. Schematic of diffraction by the moving reflective diffraction
grating or a 1D PC in the transverse orientation. �k 0dm;y; k 0dm;x� and
�k�dm;y; k�dm;x� are calculated using Eqs. (16) and (17) assuming that
the period a of the diffraction grating or a 1D PC is 3 μm, and fre-
quency of the incident plane wave is ω � 2πc∕λ0, λ0 � 1 μm, while
v∕c � 0.1. Here, we chose v∕c � 0.1 so that in Fig. 3, the propaga-
tion directions of the diffracted wave vectors �k�dm;y; k�dm;x� in the station-
ary reference frame S could be visually distinguished from those of the
wave vectors �k 0dm;y; k 0dm;x� in the moving frame S 0.

Fig. 2. Schematic of reflection by a semi-infinite moving 1D PC.

Research Article Vol. 33, No. 8 / August 2016 / Journal of the Optical Society of America B 1619



and y direction), Bloch theorem still applies as long as there is a
discrete translational symmetry in the x direction. Finally, even
when a finite (in the x direction) PC is considered, modes
inside of a finite PC can be developed in terms of a linear com-
bination of the counterpropagating guided modes of an infinite
(in the x direction) PC with expansion coefficients that are
determined from the continuity of the transverse components
of the electromagnetic fields on the PC boundaries with the
free space.

In what follows, we assume that a plane wave incident onto a
1D PC has a frequency ω 0 (in the S 0 frame) located outside of
the PC bandgaps. Also we assume that the electric field of an
incident plane wave is directed along the z 0-axis along which
the 1D PC is assumed to be infinite. Moreover, the incoming
plane wave is assumed to be normal to the 1D PC multilayer
and it is characterized by a wave vector −k 0 directed along the
x 0-axis. The plane wave polarization is chosen so that only TE
modes of a 1D PC are excited. If PC is finite in the x 0 direction,
an incident plane wave with frequency ω 0 excites two counter-
propagating modes of a 1D PC with wave vectors k 0x 0 and −k 0x 0

(see Fig. 5). The electric fields of the two TE modes of a PC
could be expressed in the S 0 frame as follows [1]:

E 0
�TE�x 0; y 0; t 0� � ẑ 0 · E 0

�k 0
x 0 ;ω

0 �x 0; y 0�ei��k 0
x 0 x

0−ω 0t 0�; (18)

where according to the Bloch theorem, E 0
�k 0

x 0 ;ω
0 �x 0; y 0� are the

periodic functions in the x 0 direction with a period a (the
thickness of a bilayer in a PC multilayer). Note that k 0x 0

in Eq. (18) is confined to the one-dimensional Brillouin zone
−π∕a < k 0x 0 ≤ π∕a.

A typical band diagram of the modes of a finite (in the y
direction) PC is presented in Fig. 5. In what follows, we assume
that the PC size in the y 0 direction is much larger than its period

and the wavelength of operation �d ≫ a; d ≫ λ0�. Under these
assumptions, and considering that the PC is infinite in the z 0

direction, then its band diagram will look very similar to the
one pertaining to an infinite (in the y 0 direction) PC. Here,
we assume that only modes propagating along the x 0 direction
are excited due to normal incidence angle of the incident plane
wave. Such modes are characterized by the Bloch wave vectors
�k 0x 0 , and their dispersion relations (solid lines in Fig. 5) are
given by �k 0x 0 �ω 0�. Due to the finite size of a PC in the y di-
rection, the band diagram (as compared to that of a PC, which
is infinite in the y 0 direction) has to be modified by including a
continuum of states propagating in the free space. These states
are plane waves propagating along all possible directions in the
XOY plane. In this case, modes guided within a PC become
phase matched with the modes of a radiation continuum and,
therefore, become leaky modes. Thus, by choosing a high
enough frequency of the excitation plane wave incident nor-
mally (along the x 0 direction) onto a moving PC, we can excite
leaky guided modes inside of a PC, which can then leak out
into free space sideways (along the y 0 direction). Such leaky
waves can then be registered as harmonics by the stationary
detector (in the S frame) outside of a moving PC.

Note that Eq. (18) holds both inside and outside of a PC. In
what follows, we only consider Eq. (18) outside of a PC in the
free space. There, applying LT to Eq. (18), we could transform
the waveform back into the stationary frame S:

Air:E�
��x; y; t� ∝ ẑ · E 0

�k 0
x 0 ;ω

0 �γ�x − vt�; y�

× ei�γ��k 0
x 0�

ω 0v
c2
�x−γ��k 0

x 0 v�ω 0�t�: (19)
Equation (19) constitutes the general form of a solution for

the electric field of the TE modes outside of a 1D PC in the
stationary S frame. Note that in Eq. (19) we do not show the

Fig. 5. (a) Dispersion relations of the guided waves propagating
perpendicular to the periodic multilayer [1]. The light gray region de-
fines a continuum of radiation states in the free space. Guided waves in
the radiation continuum become leaky waves. The dark gray region
defines the bandgap of the multilayer (see page 47 in [1]).
(b) Field intensity at the upper edge of the first photonic bandgap
(see Fig. 3.7 on page 77 in [1]).

Fig. 4. Schematic of the leaky waves of a moving 1D PC. A 1D PC
consists of the alternating high- and low-refractive index layers
(nh � 4.5, nl � 1.5). The thicknesses of high- and low-refractive
index layers are chosen to satisfy the quarter-wave conditions dh;l �
λ0∕nh;l at the wavelength λ0 (see page 72 in [1]). �k��x;n; k

�
�y;n;ω

�
�;n�

are calculated using Eqs. (24)–(27) assuming that the frequency of the
incident plane wave (in the S’ frame) corresponds to the lower edge
of the seventh-order bandgap ω 0 ≈ 13 · 2πc∕λ0, k 0x 0 � π∕a, while
v∕c � 0.1. Note that in this case the vectors �k��x;n−1;
k��x;n−1;ω

�
�;n−1� overlap with the vectors �k�−x;n; k�−x;n;ω�

−;n�.
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contributions of the B fields for the sake of simplicity. These
terms [see Eqs. (4)] have the same dependence of the phase on
x 0 and t 0, and they also feature a multiplier function that is
periodic in the x 0 direction with a period a. Thus, omission
of the terms containing B fields does not affect our further der-
ivations for the frequencies and wave vectors of the side-emitted
leaky waves.

Since E 0
�k 0

x 0 ;ω
0 �x 0; y 0� is a periodic function in the x 0 direc-

tion with a period a, it can be presented in terms of the discrete
Fourier series,

E 0
�k 0

x 0 ;ω
0 �x 0; y 0� �

X�∞

n�−∞
An
�k 0

x 0 ;ω
0 �y 0� · ei2πna x 0 ; (20)

where n is an integer and An
�k 0

x 0
�y 0� are the Fourier coefficients

that represent amplitude of the generated harmonics. To
understand further dependence of the harmonic amplitudes
on the harmonic order, we now evaluate Fourier coefficients
associated with a periodic part of the field distribution in
the leaky modes of a PC [Eq. (20)]. Modal distribution in
the leaky modes of a PC in the vicinity of the upper edge
[see Fig. 5(b)] will be similar to that of a mode at the upper
bandgap edge (k 0x � π∕a) for which analytical expression is
known (see Fig 3.8 on page 77 in [1]). In particular, in the
case of a high refractive index contrast (nh ≫ nl ), there would
be virtually no field in the high refractive index layer with most
of the field concentrated in the low refractive index layer, which
could be approximated as

E 0
�k 0

x 0 ;ω
0 �x 0; y 0� �

�
sin
�
x 0
d l
· π
�
; x 0 ∈ �0; d l 	

0; x 0 ∈ �d l ; d h	
; (21)

where the d l and dh are the thickness of the high- and low-
refractive index layers, respectively, and d l � dh � a. Thus,
the Fourier coefficients in Eq. (20) could be calculated as
follows:

An
�k 0

x 0 ;ω
0 �y 0� � 1

a

Z
a

0

E 0
�k 0

x 0 ;ω
0 �x 0; y 0� · e−i2πnx

0
a dx 0: (22)

Equation (22) could be solved as

An
�k 0

x 0 ;ω
0 �y 0� � π

adl
·

e
−i2πn
a ·dl − 1

� πd l
�2 − �2πna �2

⇒ jAn
�k 0

x 0 ;ω
0 �y 0�j � 2ad l

π
·
���� sin�πnd l

a �
a2 − �2nd l �2

����: (23)

From Eq. (23), we find that the amplitude of the generated
harmonics is a sensitive function of the harmonic order number
n, and for high-order numbers the harmonic amplitude de-
creases very fast as jAn

�k 0
x 0 ;ω

0 �y 0�j ∝ n−2. From Eq. (22), we also

conclude that the amplitude of a harmonic will be a sensitive
function of the shape of the modal distribution. In the most
extreme case, if the modal field is confined to the region of
space of size d , which is much smaller than the PC period
a, then electric field can be approximated as a delta function
δ�x 0�, which would result in constant amplitude for the gen-
erated harmonics up to the very high orders n ∼ a∕d . In passing
we notice that this scenario is indeed possible in the case of
weakly coupled photonic crystal resonator arrays, where the
effective period (distance between resonators) can be made

much larger than the resonator size, which defines modal field
size in the resonance.

Finally, substituting Eq. (20) into Eq. (19), we finally get

Air:E�
��x; y; t� ∝ ẑ ·

X�∞

n�−∞
An
�k 0

x 0 ;ω
0 �y�ei�k��x;nx−ω

�
�x;nt�; (24)

where

k��x;n � �k 0x 0 �ω 0�γ � ω 0vγ
c2

� 2πnγ
a

;

ω�
�;n � ω 0γ � k 0x 0 �ω 0�vγ � 2πvnγ

a
;

ω 0 � ωγ

�
1� v

c

�
: (25)

Moreover, note that Eq. (24) is derived for the free space
outside of a 1D PC. There, radiation can be expanded into
TE-polarized plane waves ∝ ei�k

�
x x�k�y y−ωt� with the wave vector

components satisfying a standard dispersion relation in
the form k�2x � k�2y � �ω�

c �2. From this we conclude that
An
�k 0

x 0 ;ω
0 �y� in Eq. (24) should be necessarily in the form

An
�k 0

x 0 ;ω
0 �y� � An

�k 0
x 0 ;ω

0eik
�
�y;ny. Therefore, the electric field of

the leaky PC mode in the free space can be presented as

Air:E�
��x; y; t� ∝ ẑ ·

X�∞

n�−∞
An
�k 0

x 0 ;ω
0 · ei�k

�
�x;nx�k��y;ny−ω

�
�;nt�;

(26)

where

k��y;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω�
�;n

c

�
2

− �k��x;n�2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω 0

c

�
2

−

�
2πn
a

� k 0x 0 �ω 0�
�

2
s

: (27)

To summarize, Eqs. (24)–(27) indicate that upon launching a
single-frequency plane wave normally onto a moving PC which
is finite in the transverse direction, two types of frequency har-
monics will be emitted sideways into the free space, which can
then be registered using a stationary detector outside of a PC.

D. Moving Hollow-Core Bragg Waveguide

We now study guided modes of a moving hollow-core planar
photonic bandgap Bragg waveguide. Such waveguides feature a
hollow core sandwiched between two semi-infinite planar
Bragg reflectors (Fig. 6). The reflector layers are parallel to
the XOZ plane while the waveguide is directed along the
x-axis. Moreover, Bragg waveguide moves with a constant
velocity v along the x-axis in the frame S, while a stationary
detector is located in the free space inside of the waveguide hol-
low core. We suppose that the waveguide has a finite length in
the x direction, and therefore, an incident plane wave would
generally excite two counterpropagating waves inside of the
waveguide core. In the moving frame S 0, the waveguide is at
rest, and the electric fields of its counterpropagating core
guided modes can be written as follows [1]:

E 0
�β 0�ω 0��x 0; y 0; t 0� � U 0

�β 0�ω 0��y 0�ei��β 0�ω 0�x 0−ω 0t 0 	; (28)
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where U 0
�β 0�ω 0��y 0� is a vector function describing distribution

of the modal electric field along the y 0 axis, β 0 is a modal propa-
gation constant, while β 0�ω 0� defines the modal dispersion
relation (see Fig. 7).

Here, we consider the case of a single-mode Bragg wave-
guide shown in Fig. 7. In the case of a multimode Bragg wave-
guide, one has to consider all the excited guide modes, which
results in the generation of multiple frequencies. Using LT we
transform Eq. (28) back into the frame S:

E�
��x; y; t� ∝ U 0

�β 0�ω 0��y�ei��β 0�ω 0�γ�x−vt�−ω 0γ�t− v
c2
x�	: (29)

From Eq. (9), ω 0 � ωγ�1� v
c�, while β 0�ω 0� is the modal

dispersion relation in the frame S 0 where the Bragg waveguide is
stationary. By substituting ω 0 into Eq. (29), we could obtain
the propagation constant β� and frequency ω� of the two coun-
terpropagating modes of the hollow-core Bragg fiber in the
stationary frame S:

β�� � �β 0�ω 0�γ � ω 0vγ
c2

;

ω�
� � ω 0γ � γβ 0�ω 0�v;

ω 0 � ωγ

�
1� v

c

�
: (30)

We note that Eq. (30) defines the new dispersion relations
of the guided modes in the moving hollow-core photonic
bandgap (PBG) waveguide in the stationary frame S, while
β 0�ω 0� is the modal dispersion relation of a stationary wave-
guide in the moving frame S 0. Note that expressions (30)
are applicable to any hollow-core planar waveguide, and are
not exclusive to the hollow-core Bragg waveguides.

As an example, consider the modes of a hollow-core planar
metallic waveguide of a core size d c . As is well known from the
basic theory of waveguides, the dispersion relation of the core
guided modes in such a waveguide is simply

β 0�ω 0� � 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ω 0�2 − �ωn

c �2
p

; (31)

or alternatively �ω 0�2 � �cβ 0�ω 0��2 � �ωn
c �2, where ωn

c �
πcn
d c
; �n ∈ N � is a cutoff frequency of the nth guided mode of

a hollow metallic waveguide. Then, according to Eqs. (30) and
(31), dispersion relations of the counterpropagating modes of a
moving hollow-core planar metallic waveguide will be

β�� � � γ

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ω 0�2 − �ωn

c �2
p

� ω 0vγ
c2

;

ω�
� � ω 0γ � vγ

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ω 0�2 − �ωn

c �2
p

;

ω 0 � ωγ

�
1� v

c

�
: (32)

Using Eq. (32), we plot in Fig. 8 the dispersion relation of a
guided mode of a moving hollow-core planar metallic wave-
guide in the stationary frame S. As shown in Figs. 8(b) and
8(c), modal cutoff frequencies exhibit redshift from ωn

c to
ωn
c ∕γ�1� v

c�. Note that in order to demonstrate a visually pro-
nounced frequency shift in Fig. 8, we let v∕c � 0.1.

From Eq. (32), we conclude that for a moving hollow-core
waveguide, modal cutoff frequencies exhibit redshift from ωn

c
to ωn

c ∕γ�1� v
c�. Moreover, in the vicinity of a new cutoff fre-

quency ω � ωn
c ∕γ�1� v

c�, effective refractive indices of the
guided modes as well as their group velocities can be expressed
as follows:

n��eff jω� ωnc
γ�1�v

c�
� β��c

ω�
�

� v
c
; v��g �

∂ω�
�

∂β��

����
ω� ωnc

γ�1�v
c�

� v

ω�
�jω� ωnc

γ�1�v
c�
� γωn

c ; β��jω� ωnc
γ�1�v

c�
� ωn

c vγ
c2

; (33)

while the modal chromatic dispersion ∼∂2β�−∕∂2ω�
− changes

sign at ω � ωn
c ∕�1� v

c� for the β�− mode:

n�−eff jω� ωnc
1�v

c

� 0; v�−g �
∂ω�

∂β�

����
ω� ωnc

1�v
c

� 0

ω�
− jω� ωnc

1�v
c

� ωn
c ; β�− jω� ωnc

1�v
c

� 0: (34)

Fig. 7. Example of a band diagram of a periodic multilayer with a
single layer defect. The 1D PC consists of the alternating high- and
low-refractive index layers (nh � 2.8, nl � 1.5). The thickness of the
multilayer materials is optimized for the light with a wavelength λ0. In
particular, the quarter-wave condition at the glancing incident angles is
satisfied dh;l � λ0∕�4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵh;l − ϵa
p �. The core size is d c � 2d l . The solid

thick line defines the dispersion relation of the fundamental bandgap
core-guided mode. The gray regions represent continuum of the delo-
calized states in the multilayer (see page 85 in [1]).

Fig. 6. Schematic of the excitation of guided modes in a semi-
infinite moving hollow-core planar Bragg waveguide.
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Finally, we note from Eq. (32) that dispersion relations
of the core guided modes of a moving hollow-core metallic
waveguide satisfy the same simple dispersion relation as
the modes of a stationary waveguide Eq. (31) �ω�

��2 �
�cβ���ω 0��2 � �ωn

c �2.
E. Moving Hollow-Core 2D PC Waveguide

Finally, we study frequency generation in the hollow core of a
moving 2D hollow-core photonic crystal waveguide. In Fig. 9,
we present an example of such a waveguide with a hollow core
surrounded by a photonic crystal cladding featuring a square
lattice of dielectric rods. The waveguide is homogeneous along
the z 0 direction and periodic along the x 0 and y 0 directions with
the lattice constant a. Waveguide hollow core is a defect intro-
duced into the infinite photonic crystal by removing one row of
the dielectric rods. The photonic crystal is moving along the
x-axis at a constant velocity v in the frame S. In the frame
S 0, the photonic crystal is stationary. For the sake of simplicity,
we consider the TE-polarized mode of a waveguide excited by
the incident plane wave polarized in the z direction. In the case
of a finite size (in the x 0 direction) PC, when a plane wave with
a wave vector −k 0 is incident onto a photonic crystal waveguide
in the frame S 0, the plane wave excites two counterpropagating
modes in the waveguide core that have the electric fields in the
Bloch form (see page 150 in [1]):

E 0
��x 0; y 0; z 0; t 0� � ẑ 0 · U 0

�β 0�ω 0��x 0; y 0�ei��β 0�ω 0�x 0−ω 0t 0�; (35)

where β 0�ω 0� is a dispersion relation of the core guided mode of
a PC waveguide in the moving reference frame S 0 in which the
waveguide is stationary (see Fig. 10, for example). Also accord-
ing to the Bloch theorem, β 0�ω 0� is confined to the first
Brillouin zone �−π∕a; π∕a	, and U 0

�β 0�ω 0��x 0; y 0� are the peri-
odic functions along the x 0-axis with a periodicity of a:

U 0
�β 0�ω 0��x 0 � a; y 0� � U 0

�β 0�ω 0��x 0; y 0�: (36)

Applying LT to the phase component in Eq. (35) the electric
field of the guided mode in the free space of a hollow core in the
frame S could be expressed as

E��x; y; t�∝ ẑ ·U 0
�β 0�ω 0��γ�x − vt�; y� · ei��β 0�ω 0�·γ�x−vt�−ω 0γ�t−x v

c2
�	:

(37)

Fig. 8. (a) Dispersion relations of the two counterpropagating
modes guided in a moving hollow-core metallic waveguide. (b)–
(c) Same two dispersion relations, however, now as a function of
the excitation frequency ω. Notice that in the frequency range ω ∈
�ωn

c ∕�1� v
c�γ;ωn

c ∕�1� v
c�	 the signs of the β�� propagation constants

are both positive. Therefore, in this frequency range, both core guided
modes can only propagate in the direction opposite to the direction of
the incident light. This is only possible in the case of a short finite
waveguide due to reflection from the waveguide outcoupling end.
In the case of an infinite waveguide, effective cutoff frequency will,
therefore, be ωn

c ∕�1� v
c�.

Fig. 9. Schematic of the excitation of guided modes in a moving
hollow-core 2D PC waveguide.
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As in the prior sections, we do not show explicitly the terms
proportional to the magnetic field [see discussion after
Eq. (19)]. Using discrete Fourier series for the periodic func-
tions U�β 0�ω 0��γ�x − vt�; y�, we have

U 0
�β 0�ω 0��γ�x − vt�; y� �

X�∞

n�−∞
An
�β 0�ω 0��y�ei

2πn
a γ�x−vt�; (38)

where n is an integer, and An
�β 0�ω 0� are the Fourier coefficients.

Substituting Eq. (38) into Eq. (37), we obtain the angular
frequencies and the propagation constants of the guided modes
inside of the moving 2D PC in the frame S:

ω�
�;n � ω 0γ � β 0�ω 0�vγ � 2πvnγ

a
;

β��;n�ω� � �β 0�ω 0�γ � ω 0vγ
c2

� 2πnγ
a

;

ω 0 � ωγ

�
1� v

c

�
: (39)

We therefore conclude that two frequency combs are gen-
erated inside of the hollow core of a moving 2D PC that can be
detected with a stationary detector placed in the waveguide
hollow core.

In the limit of a large hollow core (by removing several rows
of dielectric columns) the mode propagating in the free space of
a hollow core has a modal effective refractive index close to that
of the free space neff ∼ 1. In this case, the modal dispersion
relation ω 0�β 0� within the fundamental bandgap can be simply
approximated as

ω 0�β 0� � β 0c; β 0 ∈
	
0;
π

a



: (40)

Substituting Eq. (40) into Eq. (39), we get

ω�
�n � cγβ 0

�
1� v

c

�
� 2πvnγ

a
;

β��n�ω� � �γβ 0
�
1� v

c

�
� 2πnγ

a
; (41)

which can be further simplified to give

ω�
�n � �c

�
β��n −

2πnγ
a

�
1
 v

c

��
: (42)

Using Eqs. (40)–(42), in Fig. 11 we plot dispersion relations of
the two counterpropagating modes guided in a large hollow
core of a moving 2D PC in the stationary frame S. We
note that instead of plotting directly Eqs. (40)–(42) and
having negative frequencies, we rather plot sign�ω�� · ω�

and sign�ω�� · β��ω��. This way, only positive frequencies
appear in the band diagrams, while the direction of wave propa-
gation can still be referred from the sign of the propagation
constant sign�ω�� · β��ω��. This follows from the observation
that both ei�βx−ωt� and ei�−βx�ωt� define modes propagating in
exactly the same direction.

5. COMPARISON OF DIFFERENT MOVING PC
SYSTEMS AND DISCUSSION OF FACTORS
RELATED TO THEIR EXPERIMENTAL
FEASIBILITY

In this paper we have theoretically proposed several systems
based on moving PCs for generation of new frequencies.
We now summarize the properties of these systems and discuss
their experimental feasibility. First, we considered reflection of
monochromatic light by a semi-infinite 1D multilayer PC, as-
suming normal incidence of light onto a PC plane. In this case,
the reflected wave shows a classic Doppler frequency shift (∼ v

c ),
similarly to the case of reflection form a single moving dielectric
interface. In order to achieve maximum reflectivity, frequency
of the incident light should be located within the PC bandgap
as calculated in the moving reference frame S 0. Next, we con-
sidered diffraction of a monochromatic light by a moving 1D
grating (or a 1D PC in the transverse orientation). In this case
we found [see Eq. (17)] that the frequencies, propagation di-
rections, and amplitudes of the diffracted orders are similar,
while somewhat different (by a factor of ∼ v

c ) from those of
the diffraction orders generated by a stationary grating. After
that we have analyzed generation of harmonics via excitation
of the leaky waves of a moving 1D PC. In this case a finite
PC (in the transverse direction) is excited with a monochro-
matic light that is incident normally onto the PC plane.
Harmonics are then observed from the side by placing a
detector outside of a PC. The frequency spacing of the
generated harmonics could be calculated from Eq. (25) as
Δω�

�;n � 2πc
a

v
c γ, where a is a period of a photonic crystal in

the moving reference frame S’. Thus, in order to simplify
detection of such harmonics one interesting question is about
increasing spacing between them. This can be achieved either
by increasing the moving speed of a PC or decreasing the PC
period a. As far as the first option is concerned, under regular
laboratory conditions, v

c ∼ 10−5–10−6. To pursue higher mov-
ing speed of PCs, one might consider immobilizing a PC on a
projectile or satellite that travels with speeds of the order of

Fig. 10. Example of a dispersion relation of a core-guided mode of a
hollow-core 2D PC waveguide (solid thick line). The gray regions re-
present continuum of the delocalized states inside of a 2D PC reflector
(see page 154 in [1]). The PC reflector comprises a square lattice of
rods suspended in air. The period of a square lattice is a. An individual
rod has a dielectric constant ϵa � 9 and a radius ra � 0.38a. The hol-
low core is a defect introduced into a perfect PC lattice by removing
one row of the dielectric rods.
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several kilometers/second. Another way to increase harmonics
spacing is by decreasing the PC period a, while conserving its
bandgap center wavelength λ 0c [note that λ 0c is the bandgap
center wavelength; however, as shown in Fig. 5, the operation
wavelength λ 0 in Eq. (18) should be slightly different from λ 0c ,
as λ 0 is chosen at the edge of the bandgap]. In the case of the
normal incidence, PC geometrical parameters, such as low and

high refractive index layer thicknesses are chosen using the
quarter-wave condition nhdh � λ 0c

4 , nl d l � λ 0c
4 . As the PC

period is a � d l � dh � λ 0c
4 �n−1h � n−1l �; therefore, its value

could be minimized by using dielectric materials with relatively
high refractive indices nh;l ≫ 1. Moreover, as mentioned in
Section 4.B, amplitude of the generated harmonics associated
with the leaky modes of moving PCs could be associated with
the Fourier coefficients [Eq. (20)] of the modal field distribu-
tions. In a typical scenario when layer thicknesses inside of a PC
multilayer have comparable dimension d l ∼ dh ∼ a, most of
the energy in the generated harmonics will concentrate in
the first few low-order harmonics. Consequently, detection
of higher-order harmonics could be practically challenging.
This can be alleviated by using coupled photonic crystal reso-
nator arrays in which modal size in the resonance (resonator
size d ) can be much smaller than the distance between the indi-
vidual resonators (period of the photonic crystal array a), thus
allowing efficient excitation of the higher-order harmonics of
up to ∼ a

d . Finally, in our work we considered light guidance
by a moving hollow-core Bragg waveguide as well as a hollow-
core 2D PC. Of particular interest for practical implementation
is a case of the hollow-core 2D PC, in which two frequency
combs can be generated and potentially detected inside of
the waveguide hollow core. As in the case of leaky modes of
a finite-size PC, in order to simplify detection of the generated
frequencies we need to increase spacing between the individual
harmonics, as well as increase harmonic amplitudes. In order to
increase harmonics spacing one has can either use high moving
speed of the PC, or one can increase the ratio of the operational
wavelength to the PC period λ 0

a , which can be accomplished by
using high refracting materials. Finally, in passing we mention
that relative amplitudes of the higher-order harmonics can be
enhanced by resorting to the coupled photonic crystal resonator
arrays, while further studies are needed to fully elaborate the
validity of this approach.

6. CONCLUSION

We have discussed the experimental feasibility and presented
several system designs for the detection of new frequencies gen-
erated when light is interacting with the moving photonic crys-
tals. We first presented a rigorous mathematical formulation for
the analysis of reflection of an electromagnetic wave by a single
moving dielectric interface. Next we have demonstrated that
reflection from an infinite 1D PC (incidence direction is
perpendicular to the multilayer plane) only results in a classic
Doppler shift of the reflected light frequency, and in this respect
it is similar to the reflection from a moving single dielectric
interface. We have then described generation of frequency har-
monics when incident light is diffracted by a moving diffractive
grating or a 1D PC in the transverse orientation (incidence di-
rection is parallel to the multilayers). Next we have described
frequency harmonics generation via excitation of the leaky
waves of a moving 1D PC. In this case, incidence direction
is perpendicular to the multilayer plane; however, the PC is
assumed to be of finite size in the transverse direction and
new frequencies are observed at the PC edge. Finally, we have
derived dispersion relations for the modes guided in the hollow

Fig. 11. (a) Dispersion relations (in the stationary frame S) of the
two counterpropagating modes guided inside of a large hollow core of
a moving 2D PC waveguide. The mode propagating along the x di-
rection is shown as solid lines, while the mode propagating along –x
direction is shown as dashed lines. Here we use v∕c � 0.15 in order to
visually detect in the graphs above a pronounced shift in the frequency
ω�
�n in response to different harmonics orders. (b)–(c) Same two

dispersion relations, however, now as a function of the excitation fre-
quency ω. Clearly, for any given excitation frequency ω, there are two
frequency combs ω�

�n that are generated inside of a hollow core of a
photonic crystal waveguide.
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core of the moving hollow-core waveguides. In particular, we
have concluded that in the case of the hollow-core 2D PC
waveguides, two frequency combs are generated inside of
the waveguide hollow core.

APPENDIX A

In Section 3, we mention that Maxwell’s field equations are
invariant under Lorentz transformation. In particular, the elec-
tric and magnetic fields in the free space in the stationary frame
S are related to those in the moving frame S 0 as follows:

E 0 � γE � �1 − γ� · �E · v� v
v2

� γ�v × B�; (A1)

B 0 � γB � �1 − γ� · �B · v� v
v2

−
γ�v × E�

c2
: (A2)

In the case of a plane wave with its electric field polarized in
the z direction, and assuming the moving frame displacement
in the x direction, Eqs. (A1) and (A2) could be simplified as

E 0 � γE � γ�v × B�; (A3)

B 0 � γB −
γ�v × E�

c2
: (A4)

In addition, from the Maxwell equations, the electric and
magnetic fields of a plane wave in the free space in the frame
S are related as

E � −
k × B
ω

· c2; (A5)

B � k × E
ω

: (A6)

Substituting Eqs. (A5) and (A6) into Eqs. (A3) and (A4),
respectively, we get for the case of a plane wave:

E 0 � γE � γv × �k × E�
ω

� γE
�
1 −

v
c

�
; (A7)

B 0 � γB � γv × �k × B�
ω

� γB
�
1 −

v
c

�
: (A8)

Therefore, we conclude that when a plane wave is trans-
formed from the stationary frame S into the moving frame
S 0, the amplitudes of its electric and magnetic fields decrease
by the factor γ�1 − v

c�.
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