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repeating alternate concentric layers of two 
different polymers[4] or the same polymer 
with different dopants.[5,6] The bandgap 
position and its spectral width are deter-
mined by the thickness and the refractive 
indices of the alternate layers. The peri-
odic refractive index variation in Bragg 
reflectors can also be realized by intro-
ducing rings of porous material. Using 
this approach, hollow core Bragg fibers 
with solid/randomly porous multilayers,[7] 
air-hole rings[8] and cob-web structures[9,10] 
were investigated in the terahertz range. 
Another type of hollow core PBG fiber is 
the holey fiber. Such fiber features reflec-

tors formed by various types of periodic lattices, such as, rec-
tangular,[11] triangular,[11,12] honeycomb,[13] etc. The holey PBG 
fibers are typically designed to have high air-filling fractions in 
order to achieve bandgap.

Recently, both numerical[14–16] and experimental[17–20] studies 
in 2D have shown that hyperuniform disordered structures 
present a new class of disordered photonics materials that can 
possess large complete photonic bandgaps for all polarizations. 
In these studies, the key parameter that characterizes hyper
uniform structures is the hyperuniformity χ, which was first 
introduced as an order metric of a point pattern based on its 
local density fluctuations.[19] The hyperuniformity is zero for 
a random pattern taken from a Poisson distribution, which 
becomes disordered when χ > 0 and eventually settles in a 
crystal pattern around χ ∼ 0.8. A particular type of hyperuni-
form disordered structure that was considered in[19] comprises 
dielectric cylinders connected by thin dielectric bridges. Based 
on this structure, various planar hyperuniform waveguides 
have been developed with both high[16] and low refractive index 
contrasts[17] that exhibited spectrally broad bandgaps, as well as 
photonic bandgap guidance for all polarizations. Moreover, it 
was demonstrated in[18] that for the same refractive index con-
trast, hyperuniform reflectors can have larger bandgaps than 
their counterparts featuring periodic PCs. Thus, it could be 
expected that hollow-core PBG fibers featuring hyperuniform 
reflectors could have spectrally broader bandgap than hollow-
core PBG fibers that use strictly periodic reflectors.

In this paper, we propose a novel hollow-core terahertz PBG 
waveguide that uses hyperuniform disordered reflectors. This 
is essentially a generalization of the earlier 2D waveguides 
featuring hyperuniform claddings[14–20] into 3D waveguides 
and fibers. Our main motivation is to explore the possibility of 
designing hollow-core waveguides that feature spectrally broad 
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1. Introduction

Photonics crystal (PC) materials have drawn great interest 
over the years because of their unique properties that allow 
advanced light management.[1] In particular, dielectric reflec-
tors based on PCs can be employed to create hollow-core fibers 
by arranging such reflectors around a gas filled cavity. In such 
fibers, the light is confined in the hollow-core for frequencies 
within the reflector photonic bandgaps (PBGs). Based on this 
principle, various hollow-core PBG fibers have been proposed 
for simultaneously low-loss and low-dispersion guidance over 
sizable spectral ranges.[2,3] These fibers can be divided into two 
categories, Bragg fibers and holey fibers, according to their 
reflector structure.

Generally, hollow-core Bragg fibers consist of a circularly 
symmetric Bragg reflector, which is formed by alternate high 
and low refractive index layers. The Bragg reflector can be 
all-solid or porous. The all-solid Bragg reflector is formed by 
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bandgaps that are potentially superior to those attainable with 
purely periodic structures. Particularly, we demonstrate theo-
retically that using resin/air material combination that offers 
relatively low refractive index contrast of 1.67/1, one can design 
a hollow core waveguide featuring a 90 GHz (≈21%) bandgap 
centered in the vicinity of 0.41 THz. In such waveguide, highly 
porous PBG reflector is comprised of ≈113 μm radius cylin-
ders connected with ≈35 μm thick bridges. We then fabricate 
such waveguides using 3D MultiJet printing. The diameter of 
the resultant waveguides (reflector size) is ≈20 mm, while the 
diameter of the hollow core is ≈5 mm. Due to limitations in the 
3D printing process that we have used, the resolution was lim-
ited to 100 μm which allowed us to print structures with bridges 
thicker than 200 μm. As we demonstrate, both theoretically and 
experimentally, thicker bridges lead to an overall reduction of 
the bandgap spectral size. Nevertheless, the fabricated wave-
guides featured relatively wide bandgaps (up to ≈15%) and low 
transmission losses (<0.10 cm−1) within their PBGs.

2. Fiber Design

In order to generate a disordered reflector structure, we use a 
set of dielectric cylinders connected with thin dielectric bridges. 
The cylinder centers follow a distribution of 2D hyperuniform 
point pattern. For any point pattern, its point distribution can 
be characterized by its number variance, which is given by the 
standard deviation of the number of points (NR) in a sampling 
window Ω of radius R in d dimension, ( )2

R
2

R
2R N Nσ = 〈 〉 − 〈 〉 .[21] 

A point pattern is called “hyperuniform” if the corresponding 
number variance within Ω grows slower than the volume of 
Ω namely Rd. In reciprocal space, the point distribution can 
be characterized by its structure factor S(k). In,[14] it has been 
shown that if a hyperuniform point pattern is tailored such that 
its structure factor S(k) is zero for all |k| < kc, such a point pat-
tern is called “stealthy” and can produce photonic bandgaps. 
Moreover, the critical value kc can be related to the hyperuni-
formity χ, which is defined as[20]

( )cM k

d N
χ =

• 	
(1)

where M(kc) is the number of constrained degree of freedom 
and d N•  is the total number of degrees of freedom with d is 
the number of dimensions and N is the total number of points.

In our design, we used a value of χ = 0.5 since it has been 
shown in[14] that it generates a hyperuniform point pattern that 
can be optimized to produce a complete PBG for both trans-
verse electric (TE) and transverse magnetic (TM) polarizations 
in a 2D photonic crystal waveguide. To drive the structure 
factor S(k) to zero for all |k| < kc, we changed the particle coor-
dinates using the TOMLAB’s MINOP algorithm, which is a 
Fortan-based reduced gradient nonlinear optimization solver. 
In Figure 1a, we illustrate the Fourier transform in the k-space 
of the generated hyperuniform point pattern. The brightness of 
each point is proportional to the absolute value of its structure 
factor S(k).

Then, following the method described in,[14] we devel-
oped the cross section of the proposed waveguide based on 

the generated hyperuniform point pattern. A triangular mesh 
is defined with the hyperuniform point pattern as its vertices 
using the Delaunay triangulation method. Then, cylinders with 
radii of rc are placed at the centroid of each triangular cell. 
Finally, cylinders in neighboring triangular cells are connected 
using dielectric bridges of thickness tb. The central part of thus 
generated structure was replaced with a hollow core of 5 mm 
diameter. The final step in our design was to maximize the full 
PBG width of the proposed waveguide by optimizing its struc-
tural parameters, namely the cylinder radius rc and the bridge 
thickness tb. Similar optimization has been done in,[14] where 
these structural parameters were optimized for a planar hype-
runiform waveguide with the optimized parameters expressed 
as 

c

b
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N

t
L

N

α

β

=

=
	

(2)

where L is the size length of the supercell and N is the number 
of points in this supercell. For our waveguide, L = 21 mm and 
N = 256. In our simulation, we set the central frequency of the 
PBG at 0.4 THz and the cladding material refractive index at 
1.67. Then, by performing consecutive sweeps of both α and β 
parameters, we can iteratively optimize the waveguide structure 
and maximize the resultant PBG at a fixed frequency. Particu-
larly, at each optimization step, we fix one of the parameters 
(say α) at the optimal value found in the previous step. Then, 
we perform a 1D sweep of the other parameter (β) and find its 
new optimal value. We then repeat the procedure by switching 
the parameters (fix β, sweep α). Optimal value of a parameter is 
defined as one that results in an equidistant separation of the 
air light line from both the lower and the upper edges of the 
continuum of cladding states. This optimization condition is 
meant to minimize scattering of the core guided modes (with 
effective refractive indices close to that of air) into the con-
tinuum of cladding modes. After several such iterations the 
values of the two parameters converge to their optimal values 
of α = 0.084 and β = 0.027 with the corresponding optimal cyl-
inder radius and bridge thickness being 113 and 35 μm, respec-
tively. In Figure 2a,b, we demonstrate two consecutive sweeps 
of α and β after convergence is achieved. The proposed wave-
guide with optimized parameters is shown in Figure 1b, and 
the corresponding band diagram is demonstrated in Figure 2c. 
The resultant bandgap width is ≈90 GHz.

3. Optical Characterization

3.1. Band Diagram of the Proposed Waveguides

Light guidance in the proposed waveguides was analyzed 
using commercial finite element software COMSOL. For the 
experimentally fabricated waveguides, the reflector geom-
etries were extracted from the high resolution photographs 
of the waveguides cross-sections [see Figure 1c,e]. For the fre-
quency-dependent refractive index and absorption loss of the 
reflector material, we used polynomial fits (Equations (S2) and 
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(S3), Supporting Information) on experimental data presented 
in Section S1 of the Supporting Information. Computational 
cell was terminated by a circular perfect electric conducting 
boundary. Modal dispersion relations of all guided modes for 
the two fabricated waveguides with different bridge thicknesses 
are presented in Figure 4c,d. In these band diagrams, we pre-
sent the modal effective refractive indices (neff) of the guided 
modes as a function of frequency in the range of 0.1–0.5 THz. 
Due to large system size and small features, modal simulation 
above 0.5 THz is problematic due to time and memory limi-

tations. The color code for the band diagrams (Figure 3b and 
Figure 4) indicates the fraction of the power guided by the indi-
vidual mode within the hollow core. Thus, the blue color refers 
to modes with power localized mostly outside the waveguide 
core, while the red color refers to strong presence of the modal 
fields in the hollow core. In order to show core guided modes 
clearly, we use bigger dots to represent the modes with more 
than 60% of the total power in the core. The red solid line in 
these diagrams is the light line of air with n = 1, while the red 
dashed lines define the edges of the photonic bandgaps.
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Figure 1.  a) Hyperuniform point pattern in k-space. This point pattern is used to define center positions of the dielectric cylinders in the hyperuniform 
PBG reflector. b) Waveguide and a computational cell used in our numerical simulations. The reflector material is shown in blue, while the air is gray; 
the computational domain is terminated by a circular perfect electric conductor. The cylinder radii are 113 μm and the bridge thickness is 35 μm. c) The 
fabricated waveguide with a bridge thickness of 200 μm in the reflector. d) Zoom of the reflector region shown in (c). e) The fabricated waveguide with 
a bridge thickness of 250 μm. f) Zoom of the reflector region shown in (e).
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As discussed in Section 2, the numerically optimized 
reflector structure (rc = 113 μm, tb = 35 μm) presents a rela-
tively wide photonic bandgap in the vicinity of 0.4 THz. Here, 
we investigate in greater detail the band diagram of the numeri-
cally optimized structure with and without the hollow core 
(Figure 3a,b respectively). In the case of the coreless waveguide, 
COMSOL mode solver finds artificial modes propagating inside 

the bulk of the reflector structure, as well as spurious modes 
confined in the vicinity of the boundary. To exclude these spu-
rious modes due to numeric boundary, in Figure 3a we only 
present the modes that propagate in the bulk of the reflector 
and that have more than 30% of the total power guided in an 
area delimited by a radius equal to 2/3 of the waveguide outer 
boundary. As shown in Figure 3a, the resultant bandgap is 
centered at 0.41 THz and its width is about ≈75 GHz (see the 
definition of the bandgap in Section 4). When introducing a 
hollow core of 5 mm diameter, the bandgap features a plethora 
of modes that can be further identified as core guided modes 
and surface states. Thus, the guided modes are presented in 
Figure 3b with dispersion relations that have red-orange color. 
Such modes feature fields that are strongly confined (more 
than 80% by power) in the waveguide hollow core. Even for 
frequencies outside the bandgap, dispersion relations of the 
guided modes (or rather resonant modes in this case) can still 
be clearly identified due to the light blue color of their disper-
sion relations (20%–40% modal power still remaining in the 
fiber core) that stand out in the background of the dark blue 
dispersion relations corresponding to the modes of a reflector. 
Another type of modes present in the bandgap are the surface 
states that are confined in the direct vicinity of the fiber core/
reflector interface. Dispersion relations of such modes have 
light blue colors (20%–50% of modal power in the core), and 
such modes have significant presence both in the fiber core and 
in the reflector. Spectrum of the surface states is highly sensi-
tive to the structure of the core boundary. Surface states can, in 
principle, be largely suppressed via a careful design of the fiber 
core/reflector interface, which is, however, not a focus of this 
paper. In Figure 3c, we present longitudinal flux (Sz) distribu-
tions of several typical modes positioned inside and outside of 
the PBG at 0.38 THz. Particularly, the core guided modes inside 
the reflector bandgap, namely the first higher order mode B 
and the fundamental mode C, are strongly confined in the core 
region. The modes of the reflector found outside the reflector 
bandgap (modes A and F in Figure 3b) have strong presence in 
the cladding region. Finally, surface states within the reflector 
bandgap (modes D and E) are localized in the vicinity of the 
hollow core/reflector interface. Additionally, dispersion rela-
tions of the surface states can show avoided crossing phenom-
enon with the dispersion relations of the core guided modes. In 
the vicinity of the avoided crossing frequency (see red circle in 
Figure 3b, for example), surface states can be strongly coupled 
(hybridized) with the core guided modes, thus affecting guided 
mode dispersion relations and losses. This phenomenon is fur-
ther detailed in Section 4.

We also note that upon closer inspection, most dispersion 
relations corresponding to the core guided modes are made, in 
fact, of two nearly degenerate dispersion relations. This near 
degeneracy comes from the fact that the hollow core boundary 
is circular, while the core diameter (5 mm) is much larger 
than the operation wavelength (≈0.75 mm at 0.4 THz). Here, 
we would like to remind the reader that in the circularly sym-
metric hollow-core fibers,[22] most of the guided modes are 
doubly degenerated. In the case of the hyperuniform reflector, 
the modal degeneracy is lifted due to noncircularly symmetric 
structure of the reflector. Intermodal birefringence, however, 
remains very small due to low presence of the core guided 
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Figure 2.  Optimization of the waveguide structure. a) Sweeping α with 
fixed β = 0.027 results in an optimal value of α = 0.084, while b) sweeping 
β with fixed α = 0.084 results in an optimal value of β = 0.027. The two 
black solid lines define the boundaries of the continuum of the cladding-
bound states. The red line refers to the air light line with n = 1. The red 
dashed line shows the optimal parameter value for which the air light line 
is positioned strictly in the middle between the two boundaries with the 
continuum of cladding states. c) The band diagram of the numerically 
optimized waveguide structure. The red dashed lines refer to the bounda-
ries of the bandgap centered at 0.41 THz, having the width of ≈90 GHz. 
The red solid line shows the air light line.
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modes in the reflector region. For example, in the vicinity of the 
core-guided mode C in Figure 2c (neff = 0.9948), we found a sim-
ilar mode with orthogonal polarization with neff = 0.9930. Simi-
larly, in the vicinity of the core guided mode B (neff = 0.9961), 
there is another mode with neff = 0.9855. By comparing the 
modal effective refractive indices, we estimate the birefringence 
of the core guided modes in our waveguide to be on the order 
of ~ 1 ~ 2 10eff

3n∆ × − .
Finally, for the sake of comparison, we now discuss modal 

structures for the two fabricated waveguides with bridge thick-
nesses of 200 and 250 μm. The corresponding band diagrams 
were calculated using the reflector geometries extracted from 
the high resolution photographs of the waveguides cross-sec-
tions [see Figure 1c,e], as well as using complex values of the 
reflector material refractive index [see Supporting Information 
Section 1]. As those waveguides feature suboptimal bridge and 
cylinder sizes, resultant bandgaps are smaller and positioned 
at lower frequencies (Figure 4c) than those of a fully optimized 
structure (see Figure 3b). For completeness, we also perform 
partial numerical optimization of the fabricated waveguides 

(Figure 4a) and compare their modal properties with those of 
the unoptimized fabricated waveguides. For example, during 
the partial optimization, the bridge thickness of a waveguide is 
fixed to 200 μm, which corresponds to the case of a fabricated 
waveguide presented in Figure 1c, while the cylinder diam-
eter is changed until the optimal value is found. The optimal 
value is defined as one that results in the equidistant separa-
tion of the effective refractive index of the fundamental mode 
from both the lower and upper edges of the continuum of 
cladding states. Figure 4a depicts the partial optimization of 
the fabricated waveguide with the bridge thickness of 200 μm, 
where the cylinder diameter dc is optimized to maximize the 
width of the bandgap centered at 365 GHz. The results show 
that when the cylinder diameter is 318 μm (dc/tb = 1.59), the 
dispersion relation of the fundamental guided mode is opti-
mized according to the abovementioned criteria see (Figure 4b). 
In Figure 4b,c, we present the band diagrams of the partially 
optimized and experimental structures with 200 μm bridge 
thickness. The figures show strong similarity between the two 
band diagrams, as the relevant bandgaps feature similar central 
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Figure 3.  a) Band diagram of the numerically optimized reflector structure (a) without and (b) with the hollow core. Color of each dot indicates the 
fraction of power guided in the hollow core. The red circle highlights an example of the modal anticrossing between the fundamental core guided mode 
and one of the surface modes. The black circles refer to different types of modes guided by the waveguide at 0.38 THz. c) Normalized longitudinal flux 
of different modes labelled by black circles in (b). A and F: states of the reflector continuum located outside of the bandgap. B and C: second order 
core guided mode and fundamental core guided more located inside the bandgap. D and E: surface modes guided in the bandgap and localized in the 
immediate vicinity of the waveguide core/reflector interface.
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frequencies and bandgap widths. Thus, we conclude that the 
experimental structure of the fabricated waveguide is close to 
the partially optimized one.

3.2. Waveguide Transmission Measurements

Next, we characterize THz transmission of the fabricated wave-
guides using a cut-back measurement, which is detailed in the 
Supporting Information [Section S2]. Transmission spectra 
of the fabricated waveguides with lengths of 2.5, 5.0, 7.5 and 
10.0 cm are shown in Figure 5c,d. In order to calculate the 

bandgap width Δω, we applied the second moment method 
detailed in[23] with the full bandgap width defined as 

4
( ) ( )

( )

2 c
2 2

2

T d

T d

∫
∫

ω
ω ω ω ω

ω ω
∆ =

−

	

(3)

where ωc is the bandgap central frequency and T(ω) is the field 
transmission. For the waveguide with a bridge thickness of 
200 μm, there are four PBGs centered at frequencies of 0.17, 
0.22 and 0.29 and 0.38 THz characterized by enhanced trans-
mission. The spectral width of these PBGs are 18, 22, 44, and 
49 GHz. Meanwhile, in the case of the waveguide with a bridge 
thickness of ≈250 μm, four bandgaps are centered at 0.14, 0.17, 
0.23, and 0.29 THz, respectively. The estimated spectral widths 
of these bandgaps are 7, 25, 15, and 45 GHz. For comparison, 
in Figure 5a,b, we show the computed band diagrams for the 
fabricated waveguides with 200 and 250 μm bridge thicknesses. 
For the fabricated waveguide with a bridge thickness of 200 μm 
(see Figure 5a), three main bandgaps are centered at 0.14, 
0.24, and 0.37 THz, with bandwidths of 13, 12, and 40 GHz, 
respectively, while for a waveguide with 250 μm bridge thick-
nesses, PBGs are discernable at 0.13, 0.24, and 0.33 THz with 
corresponding band widths of 20, 14, and 25 GHz. Overall, a 
relatively good agreement between the measured and theoreti-
cally predicted bandgap positions and sizes is achieved. Incon-
sistencies in the bandgap locations and sizes can be attributed 
to the conceptual differences between various approaches that 
are used to characterize the photonic bandgaps. Thus, when 
using band diagrams (Figures 5a,b), bandgap positions can, 
in principle, be inferred from the position of the “finger-like” 
spectral regions (see Discussion section) that do not sup-
port any reflector states, which is a classical definition of the 
bandgap in the case of waveguides. In practice, especially in the 
case of the multimode waveguides that support multiple core 
guided modes and surface states, unambiguous identification 
of such “finger-like” regions is problematic as clearly seen in 
Figures 5a,b. Moreover, from the same figures it is clear that 
dispersion relations of the core guided modes persist even out-
side of the bandgaps, thus resulting in relatively efficient trans-
mission (albeit with higher losses) even outside of the bandgap 
regions. Therefore, one would expect some differences between 
classical definition of a bandgap from the structure of the 
modal band diagram as compared to the region of high trans-
mission in the waveguide transmission spectrum. We note that 
there exists yet another approach to defining positions of the 
photonic bandgaps from the structure of the modal band dia-
gram. In particular, one can plot the relative losses α(ω)/α0(ω) 
of all the modes (see Figures 5cd) and define bandgaps as spec-
tral regions where modal losses of the core-guided modes are 
suppressed. Here, α0(ω) is the bulk material loss of the reflector 
material (see Figure S2 in the Supporting Information section). 
When compared to the actual transmission spectra shown in 
Figures 5e,f we note that a modal loss-based method offers a 
better match between the experimental transmission data and 
predictions based on numerical simulations.

Finally, we note that, as the light is guided in the hollow 
core, transmission losses of the fabricated waveguides can be 
expected to be significantly lower than those of the reflector 
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Figure 4.  a) Partial optimization of the waveguide structure with a bridge 
thickness of 200 μm. Red solid lines refer to the boundaries of the reflector 
states, while the red dashed line indicates the optimal value of the cyl-
inder diameter which maximizes the bandgap width. b) The band diagram 
of the partially optimized waveguide structure with a bridge thickness of 
200 μm and cylinder diameter of 318 μm. c) The band diagram of the 
fabricated waveguide with bridge thicknesses of 200 μm.
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material. From Figure 5e,f, we can deduce the waveguide trans-
mission loss in various bandgap regions by comparing trans-
mission through waveguides of different lengths. In what fol-
lows, we use waveguides of 10 and 7.5 cm in our estimations. 
For instance, at 0.23 THz, the absorption loss of the first wave-
guide (tb = 200 μm) is estimated to be ≈0.1 cm−1, while that of 
the second waveguide (tb = 250 μm) is ≈0.06 cm−1. As expected, 
the propagation losses of the two fabricated waveguides are 
much smaller than the corresponding bulk absorption losses of 
the reflector material at the corresponding frequency, which is 
≈0.55 cm−1 at 0.23 THz according to Equation (S2) (Supporting 
Information).

4. Discussion

First, we would like to clarify the definition of a bandgap in 
the context of our hyperuniform waveguides. We note that 

the definitions of a bandgap related to the quasi-3D photonic 
crystal fibers differ from that of 2D photonic crystal wave-
guides. In particular, for a 2D photonic crystal waveguide, one 
usually projects the full 3D band diagram along one direction 
(such as kx in Figure 6a). Then, the region of frequencies that 
features no modes in the projected band diagram is defined as 
the complete bandgap of a 2D photonic crystal waveguide.[23] 
Such a bandgap is shown as an empty gray region in Figure 6a.  
However, in the case of the quasi-3D hollow-core photonic 
crystal fibers, complete bandgaps are rare, and one typically 
uses another definition of the bandgap, which is rather related 
to the position of the empty pockets of the modal phase space 
also known as “finger-like” regions (see Figure 6b). In this case, 
the edges of the bandgap are defined by the points of inter-
section of the air light line (na = 1) with the boundaries of the 
empty “finger-like” pockets in the band diagram as shown in 
Figure 6b, where the red dashed lines delimit the edges of the 
bandgap.[2] Within such defined bandgaps, the core guided 
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Figure 5.  The simulated band diagrams of the fabricated waveguides with bridge thickness of a) 200 μm and b) 250 μm. c,d) the corresponding rela-
tive losses of all the modes of the two fabricated waveguides. The color code of the dots in (a–d) is the same as in Figure 4. Experimentally measured 
transmission spectra of the waveguide with e) 200 μm and f) 250 μm.
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modes are well separated from the continuum of the cladding 
modes, and they propagate without scattering in the perfectly 
uniform waveguides. Generally, bandgap definition in the case 
of quasi-3D fibers results in much wider bandgaps compared to 
the size of complete bandgaps used in the case of 2D photonic 
crystal waveguides.

Next, we would like to compare transmission properties of 
our hollow-core waveguides that feature a hyperuniform clad-
ding with other types of the hollow-core THz waveguides. In the 
Table 1, we present bandgap widths and transmission losses of 

several all-dielectric hollow-core photonic bandgap and antires-
onant waveguides. The bandgap width is defined as the ratio of 
the full bandgap width to the bandgap central frequency (ω/ω0). 
Our theoretically optimized waveguides feature a bandgap 
width of 21% at 0.41 THz, while the experimentally measured 
suboptimal waveguides feature a bandgap of 15.3% at 0.29 THz, 
which are comparable to the largest bandgaps reported for the 
photonic bandgap holey or Bragg fibers.[4–14] At the same time, 
it is not as wide as the spectral width of regions of high trans-
mission featured by the antiresonant waveguides.[24–27] This is 

Table 1.  Comparison of the bandgap widths and losses of the hollow core fibers featuring different reflector types.

Fiber type Reflector structure Reflector material Core diameter Bandgap Loss [cm−1] Reference

Hyperuniform fiber Numerical optimized Resin/air ≈5 mm 21% at 0.43 THz – –

Fabricated Resin/air ≈5 mm 15.3% at 0.29 THz ≈0.1 at 0.23 THz –

Bragg fiber All solid PVDF/PC ≈1 mm – <0.02 at (1–3) THz [4]

Doped polymer PE/PE with 80% wt. 

TiO2

6.63 mm ≈13% at 0.68 THz <0.042 at 0.69 THz [5]

Randomly porous layer PE/air 6.73 mm ≈12% at 0.82 THz <0.028 @ 0.82 THz [7]

Porous rings PMMA/air 2 mm – <1.1 (1.0–1.6 THz) [8]

Cob-web structure HDPE/air 16 mm – 5.84 × 10−8 at 0.55 THz [9]

Holey fiber Rectangular lattice PTFE/air 1.12 × 1.87 mm ≈20% at 1.66 THz for  

d/Λ = 0.96

– [11]

Hexagonal lattice with 

regular holes

HDPE/air 292 μm ≈7.5% at 1.47 THz for  

d/Λ = 0.93;

≈0.022 at 1.53 THz for  

d/Λ = 0.93;

[12]

≈14% at 1.66 THz for  

d/Λ = 0.93

≈0.014 at 1.75 THz for  

d/Λ = 0.96;

Hexagonal lattice with 

inflated holes

Teflon/air 840 μm ≈17% at 1.80 THz <0.04 cm−1 at (1.65–1.95) THz [11]

Honeycomb Topas/air ≈1 mm ≈4% at 0.98 THz ≈0.058 at 0.98 THz [13]

ARROW fiber Hollow core tube PTFE ≈8.24 mm ≈41% at 1.25 THz for  

0.3 mm thin tube

– [23]

Kagome PMMA/air 1.6 mm ≈28% at 0.87 THz <0.1 at (0.75–1) THz [28]

2.2 mm ≈45% at 0.77 THz <0.06 at (0.65–1 THz)

Tube (Single ring) PMMA/are 1.62 mm ≈23% at 0.85 THz ≈0.04 at 0.83 THz [24]

Tube (Several rings) PE/air 5.5 mm ≈8% at 0.49 THz – [25]

Figure 6.  Schematic of the band diagram for a) 2D planar photonic crystal waveguides and b) quasi-3D photonic crystal fibers.
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to be expected as in the case of antiresonant waveguides the 
concept of “bandgap” is not strictly defined, and their transmis-
sion spectra do not manifest an abrupt transition from guided 
to non-guided regimes when crossing the bandgap boundaries. 
We also believe that hyperuniform fibers can be further opti-
mized to result in larger bandgaps via exploration of other point 
patterns. Thus, further work is still necessary to find out the 
maximal bandgap size possible with hyperuniform disordered 
reflectors.

As it can be seen in Table 1, the measured losses of our hype-
runiform fiber are higher than those of other types of photonic 
bandgap fibers. This phenomenon has multiple causes. First, 
due to requirements of the fabrication process, we use a highly 
absorbent polymer (VisyJet Crystal) as the reflector material 
that features material absorption that is much higher than that 
of other commercial polymers normally used for THz fibers, 
such as polyvinylidene fluoride (PVDF), polycarbonate (PC), 
polyethylene (PE), poly(methyl methacrylate) (PMMA), polyte-
trafluoroethylene (PTFE), etc. High absorption of the reflector 
material results in high losses of both the core-guided and 
the cladding modes. Second, our fiber features many surface 
states that are bound to the core/reflector interface and, thus, 
exhibit significant presence in the lossy cladding material [see 
modes D and E in Figure 3c]. Over a certain frequency range, 
these surface modes hybridize with the core-guided modes 
and eventually “transform” into the core-guided modes, and 
vice versa.[29] This phenomenon is known as anticrossing (or 
avoided crossing) and is presented schematically in Figure 7a. 
Owing to the anticrossing phenomenon, both the dispersion 
relations and the losses of the core-guided modes can be sig-
nificantly altered in this frequency range. In Figure 7b,c, we 
present modal properties in the spectral region of anticrossing 
between the core guided mode and one of the surface states. 
Near 375 GHz, the fundamental mode (black circles) shows 
strong hybridization with a surface state (blue circles), thus 
leading to a significant increase in the losses of a core guided 
mode. As seen in Figure 3b, due to a large number of the sur-
face states, one, therefore, expects the overall loss increase in 
the propagation losses of the core guided modes due to their 
interaction with surface states.

Finally, we would like to comment on the 3D MultiJet 
printing technique that has been used in this paper. Overall, 
this is a mature technology that has been widely used in the 
fabrication of microelectronic and optical devices.[30–33] Cur-
rently, ≈200 μm lateral resolution is standard, while some 
commercial system also offers sub 50 μm lateral resolution. 
The biggest limitations of this technology are a limited mate-
rial choice (photosensitive resins used in fabrication), model 
geometry and limited build volumes (≈10–20 cm linear 
dimension). Compared with the traditional fiber drawing 
fabrication method even when supplemented with stacking 
method,[27] drilling method,[34] and extrusion moulding 
method[35] for preform fabrication, the 3D MultiJet printing 
technology still enables fabrication of waveguides with sig-
nificantly more complex transverse profile. At the same 
time, fiber drawing does not suffer from “resolution” issues 
that are present in 3D printing, thus enabling fabrication 
of long (tens of meters), very smooth, submicron-thin THz 
structures.

5. Conclusion

Hollow core waveguides featuring a hyperuniform disordered 
reflector in the cladding are proposed for applications in the 

Figure 7.  a) Schematic of the modal anticrossing of the core-guided 
mode (red dashed line) and the surface mode (blue dashed line). The 
black solid lines refer to the dispersion relations of the hybridized modes. 
b) Dispersion relations and c) losses of the modes in the area highlighted 
by the red circle in Figure 3b. Two hybridized modes are labeled by black 
circles and blue circles, respectively. The color code of (b) and (c) are the 
same as that shown in Figure 3.
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terahertz frequency range. The reflector consists of the disor-
derly positioned dielectric cylinders that are connected with 
thin dielectric bridges. Center positions of the cylinders follow 
a hyperuniform disordered point pattern with the hyperuni-
formity parameter χ equal to 0.5. The proposed reflector struc-
ture was further optimized to maximize the photonic bandgap 
in the vicinity of 0.4 THz, and the optimal bridge thickness and 
the cylinder diameter were found to be 35 and 113 μm, respec-
tively. The resulting photonic bandgap features a full width of 
90 GHz (≈21%).

Based on the numerically optimized waveguide structure, two 
hollow core waveguides with different bridge thicknesses were 
fabricated using a commercial 3D MultiJet printer. Due to limita-
tions of the printing process, the resultant waveguides featured 
much wider bridge thickness (200 and 250 μm), while having 
the same overall structure of the reflector. We then theoretically 
investigated modal properties of the fabricated waveguides using 
a finite element method. Because of the suboptimal bridge thick-
nesses used in these waveguide, they exhibit smaller photonic 
bandgaps (≈15%) when compared to those of the optimal struc-
ture. Finally, we performed optical characterization of the two 
fabricated waveguides using a modified THz-TDS system. For 
the fabricated waveguide with the bridge thickness of 200 μm, 
spectral regions of enhanced transmission (bandgaps) are located 
at 0.17, 0.22 and 0.29 and 0.38 THz, and the corresponding spec-
tral widths are 18, 22, 44 and 49 GHz, respectively, resulting in 
a maximum bandgap of ≈15.1% at 0.29 THz. When the bridge 
thickness is increased to 250 μm, central frequencies of these 
bandgaps are shifted to 0.14, 0.17, 0.23, and 0.29 THz, respec-
tively, and the corresponding spectral widths are reduced to 7, 25, 
15, and 45 GHz. The maximum bandgap of this waveguide is 
measured to be ≈15.3% at 0.29 THz. The location and the widths 
of the experimentally measured bandgaps are in agreement with 
the theoretical predictions. Moreover, due to hollow core guid-
ance, transmission losses (within the bandgap) of the fabricated 
waveguides are significantly smaller than the bulk absorption 
loss of the reflector material.

6. Experimental Section
Fiber Fabrication: The developed waveguides shown in this paper 

were fabricated using a commercial MultiJet 3D printer (ProJet 3500HD 
Plus) with the photoresin (VisyJet Crystal). In order to print robust 
structures, the minimum dielectric bridge thickness is required to be at 
least four times of the printer resolution, namely ≈200 μm. Hence, we 
could not print the waveguide with the optimized structure. Instead of 
the optimized structure, we, therefore, printed two types of waveguides 
with bridge thicknesses of 200 and 250 μm, respectively, while keeping 
the same distribution of cylinders. For each waveguide, we printed four 
sections with lengths of 25 mm each. As we used the same drawing 
file for the printing, these two waveguides have almost the same 
reflector size with ≈22 mm outer diameter and ≈5 mm diameter hollow  
core. The cross-section of the fabricated waveguides is illustrated in 
Figure 1c,e.
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