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RÉSUMÉ

Les polaritons sont des états mixtes composés de lumière et de matière. Ils proviennent
d’un couplage fort entre une onde électromagnétique et une excitation de la matière. Dans
les matériaux polaires, le couplage de la lumière avec un phonon polaire est appelé un
phonon-polariton (PhP). Les PhPs se propageant dans les matériaux hyperboliques ont at-
tiré beaucoup d’intérêt pour leur capacité à fortement confiner la lumière. L’interaction de
ces PhPs avec un émetteur quantique devrait considérablement améliorer les interactions
lumière-matière au-delà du régime de couplage faible. La recherche sur les PhPs est alors
très active pour des applications en nanophotonique et en optique quantique.

Les PhPs sont généralement étudiés en utilisant une technique de microscopie de champ
proche (s-SNOM). Cette technique mesure la dispersion des PhPs, dans laquelle leurs pro-
priétés sont encodées. Les PhPs sont excités par un laser infrarouge pendant qu’une pointe
d’AFM mesure leur champ proche pour en extraire leur longueur d’onde. Cependant, cer-
tains matériaux polaires supportent la propagation de PhPs à des fréquences situées dans
l’infrarouge lointain. Il n’existe pas de source laser efficace dans ces fréquences pour le mo-
ment, ce qui limite le champ d’application du s-SNOM pour l’étude des PhPs.

La spectroscopie Raman utilise la lumière du visible pour étudier des excitations de la matière
dans l’infrarouge. Cette technique est communément utilisée pour étudier les phonons op-
tiques par exemple. Dans un travail précédemment effectué dans le groupe, la possibilité
d’étudier les propriétés des PhPs en utilisant la spectroscopie Raman en configuration rétro-
diffusée a été démontrée. Cette configuration permet de mesurer les PhPs présents dans le
GaSe, un matériau hyperbolique 2D qui supporte la propagation de PhPs ayant des fréquences
aux alentour de 240 cm−1.

Dans le travail présenté ici, l’étude des PhPs du GaSe est continuée en se focalisant sur
les phénomènes de confinement spatial. Dans un premier temps, la dispersion des PhPs en
fonction de l’épaisseur du cristal de GaSe est mesurée. Le confinement des PhPs augmente
avec l’épaisseur qui diminue, ce qui mène à un aplatissement des courbes de dispersion. Des
facteurs de confinement λ0/λPhPs allant jusqu’à 100 sont estimés. Ces valeurs sont plus
grandes que celles rapportées dans le hBN et le MoO3, deux matériaux hyperboliques dans
lesquels les PhPs sont activement étudiés. La vitesse de groupe des PhPs a aussi pu être
extraite, et une valeur de 0.014c a été obtenue. Même si des vitesses deux ordres de grandeur
plus basses ont déjà été rapportées, cela démontre la capacité de la spectroscopie Raman pour
extraire des propriétés des PhPs. Ensuite, la fréquence des PhPs en fonction de l’épaisseur du
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cristal est comparée avec des spectres Raman calculés. Un excellent accord entre l’expérience
et la simulation est trouvé. Une diminution en fréquence de 18.1 cm−1 est mesurée entre une
épaisseur de 380 et 84 nm. Cela montre que sous l’effet d’un confinement vertical, la fréquence
des PhPs diminue avec l’épaisseur de l’échantillon. De plus, le modèle théorique utilisé afin
de calculer les spectres Raman reproduit fidèlement les données expérimentales. Enfin, l’effet
du confinement latéral sur des PhPs se propageant dans des échantillons rectangulaires est
sondé à l’aide de la spectroscopie Raman résolue en polarisation. Quand les dimensions de
l’échantillon sont proches de la distance de propagation des PhPs, la fréquence des PhPs
est affectée à cause des nouvelles conditions aux frontières. Quand la propagation des PhPs
entre l’axe court et l’axe long de l’échantillon est sondée, une anisotropie de polarisation en
fréquence des PhPs est mesurée. Un écart en fréquence maximal de 1.2 cm−1 est mesurée
entre les polaritons se propageant le long d’un axe de l’échantillon et ceux se propageant le
long d’une diagonale. La longueur de propagation des PhPs peut alors être estimée comme
étant la longueur de l’axe long de l’échantillon. Une distance de propagation maximale de
328 µm a pu être estimée, ce qui est un ordre de grandeur plus grand que ce qui est rapporté
dans la littérature pour les PhPs du hBN et du MoO3.

Toutes ces contributions démontrent que la spectroscopie Raman est une technique promet-
teuse pour étudier les propriétés des PhPs dans les matériaux polaires 2D. De plus, les
propriétés des PhPs extraites du GaSe démontrent que ce matériau est un bon candidat pour
le développement futur de la phonon-polaritonique.



vi

ABSTRACT

Polaritons are mixed states of light and matter that arise from the strong coupling between
an electromagnetic wave and a matter excitation. In a polar material, the coupling of light
with a polar phonon is called a phonon-polariton (PhP). PhPs propagating in hyperbolic 2D
materials recently gained much interest because of their ability to confine electromagnetic
fields strongly. They would highly improve light-matter interactions with a quantum emitter
beyond the weak coupling regime. PhPs are therefore intensively investigated for potential
applications in nanophotonics and quantum optics.

PhPs are usually probed using scattering-type scanning near-field optical microscopy (s-
SNOM). This technique measures the PhPs dispersion, which encodes all their properties.
PhPs are excited by an infrared laser source, and an AFM tip probes their near-field to
retrieve the PhPs wavelength. However, some polar materials support PhPs with frequencies
in the far-infrared spectral region. Efficient laser sources are not available yet in this frequency
region, which limits the uses of s-SNOM for probing PhP dispersions.

Raman spectroscopy uses visible light to probe infrared material excitations and is commonly
used to probe optical phonons in crystals. In a previous work of the group, the possibility of
probing PhP properties using Raman scattering in the backward configuration was demon-
strated. This configuration allows for the measurement of highly confined PhPs in GaSe, a
2D hyperbolic material that supports PhPs with frequencies around 240 cm−1.

The study of PhPs in GaSe is pursued in this work by focusing on the study of PhP spatial
confinement effects. First, the PhP dispersion is measured as a function of the crystal thick-
ness. The PhP confinement increases with decreasing the sample thickness. This results in
a flattening of the PhP dispersion curve. Moreover, PhP confinement factors λ0/λPhPs of up
to 100 is reported. This value is higher than those reported in the most recent literature in
hBN and MoO3, two other hyperbolic materials in which PhPs are intensively studied. The
PhP group velocity can also be extracted from the dispersion curve, and a value of 0.014c is
obtained. It is higher than the ones reported in the literature by two orders of magnitude,
but it still demonstrates the ability of Raman scattering to extract important PhP properties.
Then, the PhP frequency as a function of the sample thickness is compared with computed
PhP Raman spectra. An excellent agreement between the two is observed, and a diminution
of the PhP frequency of 18.1 cm−1 is observed between sample thicknesses of 380 and 84 nm.
It demonstrates that PhPs experience frequency shifts because of vertical confinement ef-
fects, which is faithfully reproduced by computational methods. Finally, lateral confinement
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effects of PhPs are probed using polarization-resolved Raman scattering in rectangular GaSe
samples. Indeed, when the sample dimension approaches the PhP propagation length, the
frequency of the PhP shifts because of the new boundary conditions. Polarization anisotropy
of the PhP frequency is measured when the propagation of the PhP is scanned from the
short to the long sample axis. A frequency shift of up to 1.2 cm−1 is reported between PhPs
propagating along the sample axes and ones propagating along a diagonal of the sample.
The PhP propagation length can be estimated as the length of the sample long axis. A
propagation length of up to 328 µm is estimated, one order of magnitude higher than that
reported in the literature for hBN and MoO3.

These contributions demonstrate that Raman scattering is a promising technique to probe
the properties of PhPs from 2D polar materials. Moreover, the PhP properties extracted from
GaSe place this material as an excellent candidate for the future developments of phonon-
polaritonics.
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CHAPTER 1 INTRODUCTION

A crystal has many natural resonances that define the dielectric properties of a material.
These resonances can have various origins and are usually modeled by a matter excitation
associated with a characteristic frequency. When an electromagnetic wave with a similar
frequency propagates in a material, absorption can occur by the emission of such matter
excitations in the crystal. They can carry an electric and/or a magnetic dipole momentum
through which electromagnetic energy can be shared. An electromagnetic wave can eventually
couple to this dipole momentum to create a hybrid quasi-particle called a polariton. This
mixed state of light and matter shares properties of its two constituents: the ability to
interact with dipole moments through the electromagnetic field; a large momentum provided
by the matter excitation mass.

In 1950 and 1951, Tolpygo [1]1 and Huang [2] independently came up with the first theoretical
description of the coupling between an electromagnetic field and a polar matter excitation.
They demonstrated the contribution of the dipole momentum induced by the oscillation of
ions in ionic crystals on the material dielectric properties. In 1958, Hopfield demonstrated
the implication of the strong coupling between light and excitons in the dielectric properties
of semiconductors. He also proposed the name "polariton" to define the quasi-particle arising
from the strong coupling between light and a matter excitation [3]. Polaritons mainly occur
in the infrared spectral region because of the low energy of crystal resonances. They are now
intensively investigated for applications in nanophotonics and quantum optics owing to their
ability to manipulate highly confined electromagnetic fields at the nanoscale [4–7].

The range of matter excitations that can couple to light to form a polariton is broad [8]. For
example, excitons are electron-hole pairs bound by Coulomb interaction in gaped materials
such as semiconductors. They can emit or absorb light through their optical dipole moment.
When an exciton is in the vicinity of a photon, they eventually couple to form a bosonic
quasi-particle called an exciton-polariton [9]. One of their main attraction is their ability to
exhibit Bose-Einstein condensate (BEC) at room temperature. In contrast, typical atomic
BECs require to be cooled down to a very low temperature of 100 nK [10]. Among many
other applications [11–13], they are actively investigated in order to artificially reproduce the
photosynthesis reaction occurring in plants [14].

In metals, the main channel of absorption near the plasma frequency is via the emission of
a plasmon. It is the quantified mode of oscillating charge density, such as free electrons in

1This reference is a translation from Russian of the original article written in 1950.
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metals. Thanks to the electron charge, a plasmon carries an oscillating dipole moment that
can couple to a photon and form a plasmon-polariton. Because light propagates very little
in metals, plasmon-polaritons are mainly observed at dielectric/metal interfaces and referred
to as surface plasmon-polaritons (SPPs). They have a much higher momentum than light
in vacuum due to the mass of the electron, which results in very confined electromagnetic
fields. A confinement factor λ0/λpolariton of up to 240 has been reported in graphene [15].
When a quantum emitter is coupled with such a confined light, it results in a strong coupling
that significantly enhances the emission properties of the emitter. Breakdown of selection
rules and 2nd order emission processes like single or bi-photon emission as efficient as dipolar
transitions are for example expected [15]. Additionally, the ease of surface patterning of
metals allows for the fabrication of sub-wavelength devices that find applications in sensors,
imaging, and SPP waveguides [16].

Finally, in polar and ionic crystals, the quanta of lattice oscillations known as phonons can
be accompanied by an oscillating dipole. These phonons are referred to as polar phonons and
can eventually couple to a photon to form a quasi-particle called a phonon-polariton (PhP).
They are actively studied in a class of highly anisotropic materials that possess permittivities
of opposite signs along different crystal axes. These materials display a hyperbolic dispersion
and can therefore host electromagnetic modes with very high momentum [17]. PhPs propa-
gating in such materials are therefore called hyperbolic phonon-polaritons. They were first
reported in hexagonal boron nitride (hBN) [18], where they are intensively studied. In recent
years, biaxial α-MoO3 has gained more interest because of its stronger anisotropy and even
more confined hyperbolic PhPs [19]. The literature review will further discuss the properties
of PhPs.

A typical dispersion relation curve of a polariton is shown in Fig. 1.1. The dispersion relation
expresses the polariton frequency ω as a function of its wavevector q. The red and the black
dashed lines depict the dispersion of light and the one of the matter excitation, respectively.
Since matter excitations generally have a much higher wave vector than light, its dispersion
is flat when scaled to that of light. These two dispersions intersect without coupling. When
coupling occurs, the polariton dispersion exhibits two branches that never intersect. The
lower-frequency branch extrapolates to the dispersion of light at low wavevectors and the
excitation frequency at high wavevectors. The high-frequency branch displays the opposite
behavior. The polariton mixed property is more pronounced where the curvature of the dis-
persion is maximum, which corresponds to the dispersion region where polaritonic properties
can be most effectively exploited.
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Figure 1.1 Typical polariton dispersion curve. q and ω are the polariton wavevector and
frequency, respectively. The solid black curves depict the polariton upper and lower branches
originating from the strong coupling of light with a matter excitation. The red dashed line is
the dispersion of light in a given material that sees the high frequency permittivity ϵ∞. The
black dashed line is the dispersion of the material excitation.

1.1 Research objectives

The study of PhPs is an emerging field that needs constant experimental innovations in order
to characterize and harvest their promising properties. The real-space imaging technique
scattering-type scanning near-field optical microscopy (s-SNOM) initiated the study of highly
confined PhPs in naturally-occurring hyperbolic materials [18]. To both launch and measure
PhPs, this technique requires an infrared laser that is focused onto the apex of an atomic
force microscopy (AFM) tip. In MoO3 and hBN, the frequency of the PhPs lie around 950
and 1500 cm−1, respectively [20, 21]. A quantum cascade laser (QCL) is therefore utilized,
but with the cost of an AFM, this technique necessitates a large budget to be implemented.
Moreover, there exist a lots of materials with polar resonance at even lower frequencies (≈
250 cm−1) [22], where efficient laser sources are not available yet.

By limiting the study of PhPs to the use of near-field scanning techniques, the expansion of
knowledge about PhPs is impeded by technological constraints and poor accessibility of these
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experiments by research groups. The inelastic Raman scattering spectroscopy technique was
proposed in the group to overcome these limitations. Raman scattering is a well established
spectroscopy technique for studying infrared excitations such as optical phonons. As it only
requires a visible laser source and a spectrometer, it can be more easily implemented than the
s-SNOM, making the study of PhPs more accessible to the community. The measurement
of PhPs using near-forward Raman scattering has been demonstrated in 1965 by Henry
and Hopfield in a GaP crystal, very early in the study of PhPs [23]. This geometry is
however restricted to the study of weakly confined PhPs. Raman scattering in the backward
configuration enables the measurement of excitations with much higher wavevectors. The
democratization of 2D materials in recent years enabled the emergence of highly confined
PhPs that remained inaccessible in near-forward Raman scattering. Bergeron demonstrated
that PhP dispersions from 2D gallium selenide (GaSe) crystals can be accessed by using
Raman scattering in the backward configuration [24].

This work pursues the study of PhPs in GaSe by using Raman backscattering and explores
the PhP properties that can be extracted with this technique. First, the dispersion of PhPs
is measured as a function of the GaSe crystal thickness. It enables the extraction of the
PhP confinement factor and group velocity. Then, computed PhP Raman spectra as a
function of the sample thickness are compared with measured PhP frequencies. Finally,
polarization-resolved Raman scattering from rectangular GaSe crystals is utilized to probe
lateral confinement of PhPs. Because lateral confinement occurs when the propagation length
of a PhP approaches the dimension of the crystal, the propagation length of the measured
PhPs can be estimated.

1.2 Thesis outline

Chapter 2 reviews the properties of hyperperbolic materials and their applications. Then the
most recent literature on PhPs is overviewed and the properties of GaSe are presented.

The next chapter presents the theory of PhPs. First, the dispersion of phonons and polar
phonons is presented. Then, the dispersion of PhPs is derived by combining Maxwell’s
equations with the material polarization induced by the interaction of partially charged
atoms with an electromagnetic field. The Raman theory of phonons and PhPs from GaSe is
derived afterward. Finally, the computational methods used in this thesis are presented. The
dispersion of a symmetric waveguide and a matrix formalism for PhP field computation are
overviewed, and a finite element method (FEM) model developed in this work is presented.

Chapter 4 presents the experimental methodology of this work. The samples are prepared
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using mechanical exfoliation, and their dimensions are characterized using an optical mi-
croscope and an AFM. The optical setup is then presented, along with the data processing
routine used to exploit the Raman spectra.

Chapter 5 presents the important results of this work. First, a flattening of PhPs disper-
sion curves is observed experimentally as the thickness of the GaSe samples decreases. This
demonstrates that PhPs experience vertical confinement. Next, the reported PhP frequen-
cies are compared with computed Raman spectra to demonstrate the computational model
efficiency in reproducing the experimental data. Then, the lateral confinement of PhPs is
studied in rectangular GaSe samples. Polarization-resolved Raman scattering is used to probe
frequency polarization anisotropy revealing spatial confinement of PhPs.

Finally chapter 6 briefly reviews the contributions of this work, the problems encountered
and the planned future studies.
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CHAPTER 2 LITERATURE REVIEW

This chapter presents an overview of the literature on hyperbolic PhPs. Hyperbolic materials
are first briefly introduced. Then, the state-of-the-art measurement techniques and reported
properties of hyperbolic PhPs are presented. A few applications in nanophotonics are also
reviewed. Finally, the crystal structure and essential properties of GaSe are overviewed, along
with the limited literature available on polaritons from GaSe.

2.1 Hyperbolic materials

The displacement field D quantifies the total electric dipole moment induced by the move-
ment of the material bound charges upon the propagation of an electric field E. In the case
of a linear response, D and E are linked by the permittivity tensor such as

D = ϵ0
↔
ϵ E, (2.1)

where ϵ0 and ↔
ϵ are the vacuum and relative permittivity. The latter is a rank-2 tensor that

expresses as

↔
ϵ=


ϵx 0 0
0 ϵy 0
0 0 ϵz

 (2.2)

in the crystal coordinates, in which off-diagonal terms vanish. This tensor encodes the infor-
mation describing the material light-matter interaction properties (absorption, transmission,
reflection). These interactions are frequency dependent and are described by the dispersion
relation ↔

ϵ (ω) = c2k2

ω2 , where c is the vacuum celerity of light, k the electromagnetic field
wavevector and ω its frequency.

The symmetry of the crystal imposes the symmetry of the permittivity tensor. Solid-state
materials are then separated into two categories: isotropic and anisotropic. Isotropic ma-
terials have the same permittivity in each direction so the permittivity tensor is a scalar.
They correspond to fully symmetric (cubic) crystals. Anisotropic materials have different
permittivity values depending on the direction of the induced polarization. They are also
separated into two categories: uniaxial and biaxial. Uniaxials are crystals of tetragonal,
hexagonal, and trigonal symmetry. They have a symmetry plane in which the permittivity
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Isotropic Anisotropic
uniaxial

Anisotropic
biaxial

Figure 2.1 Typical isofrequency contour for the different classes of material, normalized by
k0.

is similar ϵx = ϵy = ϵ⊥. This plane is orthogonal to the crystal uniaxis, which has a different
permittivity ϵz = ϵ∥ ̸= ϵ⊥. Biaxial materials have a orthorhombic, monoclinic, and triclinic
crystal symmetry. These materials are highly anisotropic because each crystal axis has a
different permittivity [25].

The general dispersion relation of a material can be written as

k2
x

ϵx
+
k2
y

ϵy
+ k2

z

ϵz
= k2

0, (2.3)

where k0 = ω
c

is the vacuum wave vector. When the frequency of the propagating electromag-
netic field in the material is fixed, this relation defines the possible values of each wavevector
component. The wavevector and the permittivity of uniaxials can be written in terms of
parallel and orthogonal components (with respect to the crystal uniaxis). This leads to

k2
∥

ϵ∥
+ k2

⊥
ϵ⊥

= k2
0, (2.4)

where k2
⊥ = k2

x + k2
y and k2

∥ = k2
z .

Fig. 2.1 depicts the isofrequency contour for the classes of material presented above. As
can be seen, the contour is always closed so the value of the wavevector is bounded. The
contour from an isotropic material is spherical because of the same permittivity in each
crystal direction. The contour is ellipsoidal with symmetric values in the kx − ky plane for
uniaxial materials, which is expected from the in-plane symmetry of such materials. Finally,
the contour of biaxial materials also displays an ellipsoidal surface but with no symmetry
plane.
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Type-I hyperbolic Type-II hyperbolic

Figure 2.2 Typical isofrequency contour for uniaxial hyperbolic materials, normalized by k0.

In some cases, the different permittivities of anisotropic materials can have opposite signs.
Fig. 2.2 displays the isofrequency contour of such materials in the case of uniaxial materials.
The isofrequency contour is not closed and defines a hyperboloid. These materials are called
hyperbolic materials and can host highly confined electromagnetic fields [26]. The frequency
region in which one permittivity component is negative is called a restsrahlen band. In this
region, the material reflectivity gets very high (near 100% at normal incidence for type-II
hyperbolic materials), similar to metals under the plasma frequency [27]. Some materials,
like GaSe, exhibit double Reststrahlen bands where the orthogonal and parallel permittivities
are negative. No volume mode is allowed in these frequency regions, so only highly confined
surface waves can propagate.

A material can be artificially designed to exhibit a hyperbolic behavior in a given frequency
region. These materials are called metamaterials and are made of microstructured periodic
arrangement with a few tens of nanometer to micrometer periodicity. Hyperbolic behavior
arises when the electromagnetic field wavelength approaches the spatial periodicity of the
metamaterial [17]. They can be designed to operate in the near-infrared and visible spec-
tral regions. Fig. 2.3 depicts three types of artificial arrangements: multilayer hyperbolic
metamaterials are metal/dielectric stacking with sub-wavelength layer sizes. The electrons
are therefore confined in 2D layers. The in-plane and out-of-plane permittivities are fixed
by the selected materials and the thickness of the metal and dielectric layers. These are
mostly used to design type-II hyperbolic materials. Then, nanowires hyperbolic metama-
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terials are metal nanowires arranged with a sub-wavelength periodicity inside a dielectric
material. Again, the in-plane and out-of-plane permittivities can be tailored by choice of
the materials, the periodicity and the radius of the nanowires. They are mostly designed
to exhibit type-I hyperbolicity. Finally, surfaces with sub-wavelength patterning are called
hyperbolic metasurfaces. They are intensively used in metallic materials to manipulate the
dispersion of SPPs [16]. Finally, some 2D materials such as black phosphorus and hBN are
naturally hyperbolic because of their strong polar resonances highly confined between the
crystal monolayers [26,28].

a) b) c) d)

Figure 2.3 Example of hyperbolic materials. HMM stands for hyperbolic metamaterial. From
left to the right are multilayers, nanowires, metasurfaces, and natural hyperbolic materials.
Adapted with permission from Ref. [26] © 2022 Springer Nature.

Hyperbolic materials are actively studied for many applications such a sub-wavelength imag-
ing, high-resolution lithography, hyperlensing and sub-wavelength cavities [17, 27, 29]. In
addition, the highly confined electromagnetic fields hosted by such materials greatly enhance
light-matter interactions [17].

2.2 Phonon-polaritons in hyperbolic materials

In highly anisotropic polar materials, hyperbolic regions can occur between the TO and LO
polar phonon frequencies. In these regions, strongly confined electromagnetic fields eventually
couple to polar phonons to form a quasi-particle called a hyperbolic phonon-polariton (PhP).
First observed in gallium phosphide (GaP) crystals by Henry and Hopfield in 1965 [23], they
are now reported in many other hyperbolic polar materials such as quartz [30], hBN and
MoO3 [31].

PhPs are entirely characterized by their dispersion relation ω(k). PhP properties can then
be extracted such as the group velocity ∂ω/∂k, life time, propagation length, confinement
factor1 (ratio between the vacuum and PhP wavelengths λ0/λPhPs) and quality factor (ratio

1Also sometimes referred as optical compression in the literature.



10

between the real and imaginary part of the PhP wavevector Re(k)/Im(k)). The experimental
techniques used to extract the PhP properties are reviewed below.

The most common method is the scattering-type scanning near-field optical microscopy (s-
SNOM). An infrared laser source is focused on the tip of an AFM to generate and probe
PhPs at the surface of a material. The evanescent field generated upon the polarization of the
AFM tip provides enough light momentum to launch PhPs inside the hosting material [18].
AFM can also be used as a probe only for the imaging of PhP evanescent fields launched via
a metal-edge [32]. The dispersion relation is retrieved by measuring the PhP wavelength and
sweeping over frequencies.

A recent approach called photothermal induced resonance (PTIR), already used to identify
the chemical composition of samples with 1 µm depth [33], has recently emerged as a tool
for observing the propagation of PhPs. The sample, also illuminated using an infrared
laser source to excite PhPs in resonance, thermally expands upon light absorption. This
expansion is measured by the AFM tip and provides a measurement of the sample absorption
at nanoscale spatial dimensions (∼ 10 nm). [20,34]. Like s-SNOM, this technique enables the
visualization of PhP waves in real space. Therefore, the PhP wavelength can be extracted
as a function of the frequency.

Despite its first use for their experimental observation, Raman scattering is little used for
the measurement of PhPs. Before the recent democratization of 2D materials, PhPs were
only probed in bulk polar materials. These volume PhPs are weakly confined and most
of their dispersion is close to the light line. Raman scattering in the near-forward config-
uration enables to probe such weakly confined PhPs [23, 35–39]. Then, near-field imaging
techniques gained much more interest, and has become the dominant technique for the char-
acterization of PhPs. However, near-field imaging techniques are limited by the availability
of far-infrared laser sources. Indeed, some 2D polar materials such as WSe2 and GaSe ex-
hibit polar resonances at frequencies around 250 cm−1 [22]. Consequently, PhPs from these
materials cannot be accessed. It has recently been demonstrated that Raman scattering in
the backward configuration is a promising technique to probe the properties of highly con-
fined PhPs in GaSe [24]. This geometry remains unexploited and absent from the literature,
whereas it could favor the study of PhPs in a wider range of materials. To date, only one
article used Raman backscattering to study PhPs in 2D materials [40]. This work aims to
further demonstrate the capacity of Raman backscattering in extracting the PhP propagation
properties.

Table 2.1 presents the state-of-the-art properties of PhPs from hBN and MoO3, on which the
study of PhPs is mainly focused. The values given in a reference may come from measure-
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Material Reference Group
velocity

Quality
factor

Confinement
factor lifetime (ps) Propagation

length (µm)

hBN

[34]1 - 90 7 4.2 25

[31] - 60 5 5 25

[21] - 42 31 - -

[41]2 - - 60 - -

[32] 0.002c - - 1.8 6

MoO3

[42] - 40 2.5 - -

[20] 0.001c - 33 12 -

[19] - 29 50 - -

[43]3 0.002c 20 5 13.9 6.8

[44] 8 × 10−4c - 60 22 8

Table 2.1 List of the state-of-the-art PhP properties in the literature for hBN and MoO3.
The quantities presented are a selection of the best reported in each article. Moreover,
values from the same article could originate from different experimental conditions (sample
thickness, substrate, measurement method. 1: 99% 10B isotopically purified hBN crystal ; 2:
PhP measured from hBN monolayers ; 3: isotopically purified 99.9% 92Mo and 99.0% 100Mo
MoO3 crystals.
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ments made under different experimental conditions (different sample thickness, substrate,
or measurement method). The higher PhP quality factor of 90 has been reported in thin 99%
10B purified hBN [34]. Isotopic purity minimizes phonon scattering due to isotropic disorder
and therefore increases the lifetime of optical phonons [45]. Because the decay rate of PhPs
is closely related to the optical phonon lifetime, isotopically purified crystals improve PhP
quality factors. The highest PhP confinement factor is 60, reported in hBN and MoO3. In 2D
materials, the confinement factor is influenced by the crystal thickness. The reported value
in hBN is measured in a monoatomic layer [41] and therefore defines the highest confinement
factor obtainable in this materials. The thickness of the MoO3 crystal in which this value
was measured was 55 nm. Finally, the slowest PhP was measured in the biaxial MoO3, with
a group velocity of 8 × 10−4c [44]. This low group velocity denotes a strong PhP disper-
sion in favor of high confinement factors. It nevertheless implies lower propagation lengths.
Extremely low group velocities are interesting for enhanced light-matter interactions with
quantum emitters. However, they should be avoided when a higher propagation length is
prioritized, in PhP waveguides for example.

From sensing to quantum optics, the range of applications of PhPs in nanophotonics is
broad [4,6]. The choice of the substrate is of great importance as it modulates the dispersion
of PhPs as well as their propagation properties. Planar refractive optics for PhP is achieved
by substrate patterning. For example, super-resolution imaging with PhPs from hBN has
been demonstrated [47]. Moreover, PhP lenses with sub-diffraction properties were fabricated
with 1/15 λ0 focal length and 1/33 λ0 spot size [46]. Fig. 2.4 shows the focusing of PhP
fields launched from circular gold antennas to thin MoO3 crystal. The circular shape of the
antennas induces a circular PhP wavefront, leading to a focusing of the polaritonic field. For
disc diameters of D = 6.7, 11 and 15 µm, the FWHM spot size is ∼ 600, 430 and 420 nm,
and the focal length is ∼ 7, 5 and 3 µm, respectively. Hence, the focal length can be tuned
by the disk diameter and the PhP energy, as demonstrated by Ref. [46]. These focusing
properties could be utilized to concentrate highly confined PhP fields in the vicinity of a
quantum emitter to enhance light-matter interactions and improve second-order emission
processes such as two-photon emission [48].

2.3 Gallium Selenide overview

The III-VI monochalcogenides family, from which GaTe and InSe and GaSe belong, have
attracted many interests for the development of optoelectronic devices when reaching the
few monolayer thickness regime. They are investigated for the development of piezoelectric
devices that can be combined with their high photo-sensitivity [49]. They are also used as
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Figure 2.4 Planar focusing of PhPs launched from gold antenna in α-MoO3. PhP are directly
excited by a tunable infrared laser source focused on gold disc antennas. a) optical microscopy
image of the device, showing gold nano-discs of different diameters, under the α-MoO3 flake
delimited by the green region. b) Real-space image of the PhP Ez field using s-SNOM, at
a frequency 910 cm−1. f is the focal length, θ the focusing angle and D the disk diameters.
c) Simulated Ez PhP field for the same experimental settings. Adapted with permission
from [46] © 2022 John Wiley and Sons.
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a photocatalyst to improve the efficiency of the water splitting reaction. This field aims to
find a high-yield production protocol for clean energy production of H2. [50, 51]

GaSe is a semi-conductor of the III-VI group with a direct band-gap of 2.00 eV [52]. 4
polytypes ϵ, β, γ, and δ exist due to the possible different stacking ordering between layers
[53]. In this work, GaSe crystals were grown by the Bridgman method. With this method, the
dominant polytype is the ϵ, belonging to the D3h space group. Without an inversion center,
this polytype presents a non-zero χ(2) that is intensively exploited in the literature [54–56].
The ϵ polytype has a ABA stacking with 8 atoms per primitive cell, composed of 2 layers of
4 atoms bounded via the Van der Waals force. Therefore, 2D GaSe layers can be fabricated
using mechanical exfoliation. All the space groups and stacking order are listed in Ref. [53]
and shown in Fig. 2.5

Figure 2.5 Crystal structure of the different GaSe polytypes with their stacking order.
Adapted with permission from Ref. [53] © 2020 Royal Society of Chemistry.

Having two pairs of polar phonons with intersecting LO-TO splitting, GaSe is a promising
hyperbolic material displaying type-II hyperbolicity and a double Reststrahlen band. Because
of the strong polar resonances, GaSe supports highly confined hyperbolic PhPs. These polar
resonances lie at a low frequency (around 240 cm−1). s-SNOM technique cannot be used
because no laser source is available to excite these PhPs in resonance. The literature on
PhPs from GaSe is therefore lacking [38]. In addition to keep demonstrating the interest of
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Raman scattering for the study of PhPs, this work aims to enrich the literature of PhPs from
GaSe by providing interesting polariton property measurements.
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CHAPTER 3 PHONON-POLARITONS IN 2D HYPERBOLIC MATERIALS

The theory of PhPs and Raman scattering by PhPs are presented in this chapter. First,
the dispersion of phonons and polar phonons is presented. Then, the dispersion of PhPs
propagating in an infinite crystal is derived. The theory of Raman scattering by phonons
and PhPs of GaSe is then discussed through group theory. The symmetry of the GaSe
phonons and PhPs and the Raman selection rules are presented. Finally, the numerical
models used to compute the PhP electric fields and their dispersion are presented.

3.1 Phonons in uniaxial crystals

As photons are quanta of electromagnetic radiation, phonons are quanta of lattice oscillation
in solid state matter. Phonons play an essential role in defining properties like specific heat,
thermal and electric conductivity, and the speed of sound propagating inside materials. First,
a derivation based on Kittel’s textbook [57] of the dispersion of phonons in a 1D biatomic
crystal is presented. Acoustic and optical phonons are introduced, along with some properties
that can be extracted from their dispersion relation. Then, a focus is made on polar phonons
from GaSe, along with their angular dispersion. Due to the crystal anisotropy, they can be
expressed in a longitudinal, transverse, ordinary and extraordinary modes basis.

3.1.1 Phonons dispersion

In a 1D crystal with 2 atoms per unit cell, there are two phonon branches. This section
presents the derivation of their dispersion using the simple model of a linear chain of atoms
bonded by springs.

The system considered is a unit cell with 2 atoms of different masses m1 and m2 < m1,
depicted in Fig. 3.1. The force acting upon the atom of the sth unit cell is described by the
Hooke’s law. Considering only nearest neighbors interactions, the 2nd law of Newton leads
to the following set of coupled equations

m1
d2us
dt2

= C(vs + vs−1 − 2us)

m2
d2vs
dt2

= C(us + us+1 − 2vs).
(3.1)
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Figure 3.1 1D chain of atoms with 2 different atoms per unit primitive cell. The top shows the
position of atoms at equilibrium (us = vs = 0). C is the spring constant, a the atomic distance
at rest, and m1 and m2 < m1 the atoms masses. us and vs are the relative displacement from
the equilibrium of the atoms of the sth unit cell.

C is the spring constant, and us and vs the deviations from equilibrium of the sth unit cell
atom, with a mass m1 and m2 respectively.

A harmonic excitation and a linear response are assumed, leading to a harmonic response at
the frequency of the vibrational mode ω. A plane wave response is also assumed since no
damping is considered. The atoms oscillation around equilibrium therefore writes

us = ueiskxae−iωt

vs = veiskxae−iωt
(3.2)

where u, v are amplitudes, kx = 2π
λ

is the wavevector, skxa is the phase shift accumulated
with respect to the first atom of the chain, and a the distance between two atoms at rest.
Substituting into Eq. 3.1 leads to a system of two equations

 2C − ω2m1 C(1 + e−ikxa)
C(1 + eikxa) 2C − ω2m2

u
v

 = 0. (3.3)

For non-trivial solutions, ω2 and kx must satisfy
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∣∣∣∣∣∣ 2C − ω2m1 C(1 + e−ikxa)
C(1 + eikxa) 2C − ω2m2

∣∣∣∣∣∣ = 0, (3.4)

describing a second order polynomial equation of ω2. The two solutions are

ω2
optical = 2C(m1 +m2) +

√
∆

2m1m2

ω2
acoustic = 2C(m1 +m2) −

√
∆

2m1m2
,

(3.5)

where ∆ = 4C2(m1 + m2)2 − 8m1m2C
2 [1 − cos(kxa)]. This describes the dispersion of the

two branches, named optical and acoustic with ωoptical > ωacoustic. In the long-wavelength
approximation near the Brillouin zone center (kxa << 1), these dispersion relations simplify
to

ωoptical ∼
√

2C
( 1
m1

+ 1
m2

)

ωacoustic ∼
√

1
2

C

m1 +m2
· kxa.

(3.6)

The optical branch is constant, while the acoustical one evolves linearly with kx. Near the
center of the Brillouin zone, optical phonons have a zero group velocity ∂ω

∂k
. Thermal energy

therefore only flows via acoustic phonons. The dispersion described by Eq. 3.5 is shown
in Fig. 3.2, with an arbitrary mass ratio. Due to the different atomic masses, there is a
frequency gap between the optical and acoustical branches at the edge of the Brillouin zone.

3.1.2 Polar phonons in uniaxial crystals

Atoms inside a unit cell of a crystal may be totally (ionic crystals) or partially (polar crystals)
charged. In the case of GaSe, Ga and Se atoms are partially charged. The electronegativity
of Se is higher than that of Ga. As a result, electron clouds composing covalent bonds are
more localized around Se atoms, giving it a negative partial charge.

The motion of atoms inside their unit cell upon the propagation of a phonon can induce an
oscillating electric dipole moment. Such vibrational modes are called polar phonons. Fig.
3.3 shows the 2D motion of atoms arranged in a linear chain. The unit cell is composed of
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Figure 3.2 Phonon dispersion of a 1D biatomic unit cell in the first Brillouin described by
Eq. 3.6. The ratio between m1 and m2 is arbitrary different from 1.

2 atoms of different partial charges. As can be seen, transverse polar phonons have dipole
moments perpendicular to the propagation direction. These dipoles are not oriented toward
the neighboring unit cells, preventing any influence on the restoring force between atoms.
In the case of longitudinal polar phonons however, dipole moments can add up and increase
the restoring force between atoms due to the long range Coulomb forces. As a result, the
transverse/longitudinal degeneracy of polar phonons is lifted at the center of the Brillouin
zone. The longitudinal phonon has a higher energy than the transverse phonon, and the
energy splitting can be used to evaluate the dipole moment of a crystal unit cell. [58]

The lattice anisotropy of uniaxial crystals such as GaSe also affects the energy of polar
phonons. The restoring force, formerly considered isotropic, now depends on the propagation
direction inside the crystal. It lifts another degeneracy between polar phonons having an
atomic motion either aligned or perpendicular to the crystal uniaxis. The firsts have an
atomic motion along the uniaxis (symmetry A) and are subscripted ∥. The seconds are
phonons with an atomic motion in the 2D plane (symmetry E) orthogonal to the uniaxis,
and are subscripted ⊥. Here, Mulliken’s symbols A and E identifies the representation
associated to the normal modes [59]. As a result, there are a set of four non-degenerate polar
phonons. Their frequencies are labeled ωTO,⊥, ωTO,∥, ωLO,⊥ and ωLO,∥.

The frequency of these phonons therefore depends on the propagation angle with respect
to the crystal uniaxis. For oblique angles, they have a mixed A and E or mixed TO and
LO characters. This mixed nature depends on the dominant splitting process : the lattice
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Figure 3.3 2D lattice mode oscillations of transverse and longitudinal phonons. Partial charge
of atoms are depicted by "+" or "-" signs. d is the dipole moment inside an unit cell induced
by the displacement of the two partially charged atoms.
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anisotropy or Coulomb forces at the origin of the LO-TO splitting.

In GaSe, the Coulomb interaction prevails [58]. Polar phonons will then display angular
dispersion while preserving LO and TO characters. Loudon derived a simple set of formula,
plotted in Fig. 3.4, to describes the resulting angular dispersion [60]

ω2
To(θ) = ω2

TO,⊥ (3.7a)

ω2
Te(θ) = ω2

TO,⊥ cos2(θ) + ω2
TO,∥ sin2(θ) (3.7b)

ω2
Le(θ) = ω2

LO,∥ cos2(θ) + ω2
LO,⊥ sin2(θ). (3.7c)

θ is the angle between the crystal uniaxis and the phonons wavevector. For GaSe, the set
of frequencies, also listed in Table S1, is ωTO,⊥ = 213.5 cm−1, ωTO,∥ = 236.5 cm−1, ωLO,⊥
= 253.3 cm−1 and ωLO,∥ = 246.1 cm−1. The subscripts transverse ordinary (To), transverse
extraordinary (Te) and longitudinal extraordinary (Le) correspond to the new basis in which
polar phonons are expressed. The To branch, equivalent to a mode propagating in an isotropic
media, does not display any angular dispersion. The extraordinary Te and Le branches have
their energy lying between the two TO and LO polar phonon frequencies, respectively. When
studying other dispersive excitations, such as PhPs, this angular dispersion must be taken
into account in the interpretation of the experimental data.

These formulas are derived assuming a few amounts of approximations, such as a small
difference between ϵ⊥ and ϵ∥. This limits the range of application of these equations near
permittitivity resonances for example. Other approximations are discussed by Loudon in
Ref. [60]. In the next section, the dispersion of PhPs in polar material is derived. It will
show the few discrepancies between Eqs 3.7 and an exact solution.

3.2 Photon/phonon coupling : phonon-polaritons in hyperbolic materials

This section illustrate how an infrared photon can couple to the dipole moment of a transverse
polar phonon to form a hybrid quasi-particle called a phonon-polariton (PhP). This derivation
combines Maxwell’s equations with a classical oscillating bound charges model to describe
the dispersion of this quantum quasi-particle in an infinite polar crystal.
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Figure 3.4 Angular dispersion of GaSe polar phonons calculated with Eqs. 3.7. The dashed
red lines correspond to the frequencies of normal polar modes.

3.2.1 The electromagnetic wave equation

Assuming no free charge, the three Maxwell’s equations used in this derivation are

∇ × E = −∂B
∂t

(3.8)

∇ × H = ∂D
∂t

(3.9)

∇ · D = 0. (3.10)

The relations between the electric displacement field D, the electric field E and the polar-
ization density P , and between the magnetic flux B and the magnetic field H , are

D = ϵ0E + P (3.11)

B = µ0H , (3.12)

without magnetization of the material. ϵ0 is the vacuum permittivity and µ0 is the vacuum
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permeability. Assuming traveling plane waves, combining Eq. 3.8, 3.9, 3.11 and 3.12 leads
to the eigenvalue equation

k × (k × E) + ω2µ0(ϵ0E + P ) = 0 (3.13)

known as the electromagnetic wave equation. With the identity u×v×w = (u·w)v−(u·v)w
and Eq. 3.10 developed as k · E = − 1

ϵ0
k · P , Eq. 3.13 can be written as [60]

ϵ0E =
ω2

c2 P − (k · P )k
k2 − ω2

c2

. (3.14)

ω is the frequency of the electromagnetic field, k its wave vector and c = 1/√ϵ0µ0 its speed in
vacuum. This equation describes the electromagnetic part of a PhP and will be the starting
point to derive their dispersion relation. The polarization density P , describing the response
of the material to the electromagnetic field, is derived next using a model describing the
interaction between oscillating bonded charges and an electric field.

3.2.2 Polarization response of a polar material to an electric field

Electric dipole moments originating from oscillating charged atoms can interact with an
electric field, unless they are orthogonal. The interaction of a transverse polar phonon of
frequency ωTO with a transverse electromagnetic field, both propagating in the same direc-
tion, is considered. Since the momentum of light is much lower than the size of the Brillouin
zone, only long-wavelength optical polar phonons are considered. At equilibrium (without
electromagnetic field), all the unit cells have the same dipole moment since there is no atomic
displacement (u = 0).

When an electromagnetic field propagates inside a polar material, the dipole moment of each
unit cell tends to align with the electric field. This induces a motion of the atoms at the
frequency of the electric field and counterbalanced by the restoring force arising from atomic
bonds. The motion of charged atoms is then described by the two following forces

Hooke’s law : FH = −mω2
TOu (3.15)

Lorentz law : F L = e∗E (3.16)

where m is the effective mass and e∗ is the effective charge of the unit cell. E is the electric
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field component of the electromagnetic wave. The atoms motion is relatively slow due to
the long-wavelength nature of phonons near the centre of the Brillouin zone, so the magnetic
contribution of the Lorentz force is neglected. The 2nd law of Newton leads to

d2u

dt2
= −ω2

TOu + e∗

m
E. (3.17)

Still in linear response theory, with an electromagnetic field at the frequency ω, this equation
can be written as

u = e∗

m

1
ω2
TO − ω2 E. (3.18)

The polarization density is defined as P = ne∗u, with n the number of unit cell per volume.
As a result, the polarization attributed to the photon-phonon coupling is therefore

P photon−phonon = ϵ0ϵ∞
Ω2
p

ω2
TO − ω2 E, (3.19)

where Ω2
p = ne∗2

mϵ0ϵ∞
is the effective plasma frequency [61], and ϵ∞ the high frequency (ω ≫ ωTO)

permittivity of the material. The high frequency polarization response

P ∞ = ϵ0(ϵ∞ − 1)E (3.20)

should also be accounted for in the total polarization. Finally, the total polarization density
originating from the coupling between an electromagnetic field and a transverse polar phonon
is [2]

P = ϵ0ϵ∞
Ω2
p

ω2
TO − ω2 E + ϵ0(ϵ∞ − 1)E. (3.21)

Since P ∝ E, the coupling of light with polar phonons can be described by a linear material
response. The displacement field is then linearly linked to the applied electric field by the
permittivity tensor ↔

ϵ

D = ϵ0
↔
ϵ E. (3.22)

To extract the permittivity tensor, Eq. 3.21 must be combined with the electromagnetic
wave equation.
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3.2.3 Phonon-polariton dispersion in bulk materials

To obtain the PhPs dispersion relation, the electromagnetic wave equation described by Eq.
3.13 must be combined with the polarization response of a polar material to an electromag-
netic field, described by Eq. 3.21. The cases of isotropic and uniaxial materials are considered
next.

Isotropic materials

In an isotropic material, the properties of electromagnetic modes are independent of the
propagation direction. These modes can be decomposed into transverse (k ⊥ P ) and longi-
tudinal (k ∥ P ) components [60]. Starting with the transverse solution, the combination of
Eq. 3.14 with 3.21 leads to the dispersion relation of transverse PhPs

ϵ(ω) = ϵ∞ + ϵ∞
Ω2
p

ω2
TO − ω2 (3.23)

where ϵ(ω) = c2k2

ω2 . The dispersion of longitudinal PhPs is much simpler since it reduces to

ω =
√
ϵs
ϵ∞
ωTO ≡ ωLO, (3.24)

where ϵs = ϵ(0) corresponds to the material permittivity seen by a DC field. The dipole
induced by longitudinal polar phonons is orthogonal to the transverse electromagnetic field.
There is therefore no coupling between light and longitudinal polar phonons since it does not
induce any polarization inside the material (ϵ(ωLO) = 0). As expected for the propagation of
electromagnetic modes inside an isotropic material, PhPs are purely transverse. Rewriting
Eq. 3.23 leads to the PhPs dispersion relation in isotropic materials

ϵ(ω) = ϵ∞
ω2
LO − ω2

ω2
TO − ω2 − iΓω . (3.25)

The −iΓω complex term is added to account for the PhPs damping rate, attributed to the
contribution of anharmonic mode oscillation. It results in lower PhPs lifetime [24].

Uniaxial materials

The permittivity seen by an electromagnetic field propagating inside a uniaxial material
depends on the direction of the induced polarization, with ϵxx = ϵyy = ϵ⊥ and ϵzz = ϵ∥. As
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Figure 3.5 Permittivity of GaSe near polar phonon frequencies. The polar phonon frequencies
are ωTO,⊥ = 213.5 cm−1, ωTO,∥ = 236.5 cm−1, ωLO,∥ = 246.1 cm−1 and ωLO,⊥ = 253.3 cm−1.
In orange are type-II hyperbolic regions (ϵ⊥ < 0 and ϵ∥ > 0). The blue region is the double
Reststhralen band (ϵ⊥ < 0 and ϵ∥ < 0). Reprinted with permission from Ref. [24] © 2020
Alaric Bergeron.

a result, the dispersion of PhPs in uniaxial materials depends on the propagation angle θ
between the wavevector k and the crystal uniaxis.

As seen in the previous section, the TO and LO polar phonons from uniaxial crystals split
into 2 distinct frequencies ωTO,LO⊥ and ωTO,LO∥ for polarization orthogonal and parallel to
the crystal uniaxis. Eq.3.21 then separates into two independent equations, bringing two
permittivity components ϵ⊥ and ϵ∥

ϵ⊥(ω) = ϵ∞,⊥
ω2
LO,⊥ − ω2

ω2
TO,⊥ − ω2 − iΓ⊥ω

, ϵ∥(ω) = ϵ∞,∥
ω2
LO,∥ − ω2

ω2
TO,∥ − ω2 − iΓ∥ω

. (3.26)

The permittivity of GaSe is shown in Fig. 3.5, with ϵ∞,⊥ = 5.76 and ϵ∞,∥ = 7.44 [24], and
without damping (Γ⊥ = Γ∥ = 0 cm−1). The type-II hyperbolic (ϵ⊥ < 0 and ϵ∥ > 0) frequency
regions between ωTO,⊥ and ωTO,∥, and ωLO,∥ and ωLO,⊥, are displayed in orange. The blue
region is the double Reststhralen band (ϵ⊥ < 0 and ϵ∥ < 0) between the ωTO,∥ and ωLO,∥

frequencies.

Uniaxial crystals have a rotational symmetry around their uniaxis. A propagation restricted
in the x − z plane is then assumed without loss of generality. The PhP wavevector is
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decomposed into k = k sin(θ)x̂ + k cos(θ)ẑ with θ the angle between the PhPs wavevector
and the crystal uniaxis. Plugging Eqs. 3.11 and 3.22 in the wave equation 3.13 leads to the
set of equations [61]

[
c2k2

ω2 cos2(θ) − ϵ⊥(ω)
]
Ex − c2k2

ω2 cos(θ) sin(θ)Ez = 0 (3.27a)[
c2k2

ω2 − ϵ⊥(ω)
]
Ey = 0 (3.27b)[

c2k2

ω2 sin2(θ) − ϵ∥(ω)
]
Ez − c2k2

ω2 cos(θ) sin(θ)Ex = 0. (3.27c)

As can be seen, there always exists a transverse component both orthogonal to the plane of
incidence (defined by k and the crystal uniaxis, the latter coinciding with the optical axis)
and k. It corresponds to the Ey component and describes ordinary PhPs that possesses the
same dielectric properties as transverse PhPs in isotropic materials.

The two other components Ex and Ez are coupled and parallel to the plane of incidence.
They therefore describe extraordinary PhPs. They can be expressed in a longitudinal El and
transverse Et basis [61] such as

Ex = El sin(θ) − Et cos(θ) (3.28a)

Ez = El cos(θ) + Et sin(θ). (3.28b)

Replacing Ex and Ez into Eq. 3.27 leads to

ϵ⊥(ω) sin(θ)El −
[
ϵ⊥(ω) − c2k2

ω2

]
cos(θ)Et = 0, (3.29a)

ϵ∥(ω) cos(θ)El −
[
ϵ∥(ω) − c2k2

ω2

]
sin(θ)Et = 0. (3.29b)

Considering non-zero field amplitudes, the dispersion relation can be written as a 2x2 deter-
minant that must vanishes
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∣∣∣∣∣∣ϵ⊥(ω) sin(θ)
[
ϵ⊥(ω) − c2k2

ω2

]
cos(θ)

ϵ∥(ω) cos(θ)
[
ϵ∥(ω) − c2k2

ω2

]
sin(θ)

∣∣∣∣∣∣ = 0. (3.30)

Finally, the angle dependent dispersion of extraordinary PhPs is [60]

ϵ(ω, θ) = ϵ⊥(ω)ϵ∥(ω)
ϵ⊥(ω) sin2(θ) + ϵ∥(ω) cos2(θ) , (3.31)

in which the propagation of PhPs in an isotropic material is retrieved by considering ϵ⊥ = ϵ∥.
Extraordinary PhPs in a uniaxial material have a mixed longitudinal and transverse nature,
whose dispersions cannot be analytically decoupled.

PhPs propagating in infinite crystals can be decomposed in a basis of 3 normal coordinates:
a transverse ordinary (To) described by Ey, a transverse extraordinary (Te) described by
Et, and a longitudinal extraordinary (Le) described by El. These 3 components experience
different permittivities and have distinct dispersion branches as a result.

Phonon-polaritons dispersion in a infinite GaSe crystal

The dispersion of PhPs in an infinite GaSe crystal is shown Fig. 3.6 for an internal propaga-
tion angle of θ = 45◦. The solid blue curve is the dispersion of the To mode

√
ϵ⊥(ω) = ck/ω,

calculated from Eq. 3.26, independent of the propagation angle. The solid green and brown
curves are the dispersion of Te and Le modes

√
ϵ(ω) = ck/w, with ϵ(ω) calculated from Eq.

3.31. The prefixes "L" and "U" denote the lower (low-frequency) and upper (high-frequency)
branches. Since an infinite crystal is considered, no mode exists in the double Reststhralen
band between the ωTO,∥ and ωLO,∥ phonon frequencies where only surface modes can propa-
gate.

Regions with non-zero second derivative are dispersion domains where PhPs have the highest
mixed electromagnetic and phononic nature. As can be seen in Fig. 3.6, the amplitude of
the PhPs wavevectors in the dispersion anti-crossing region is around 104 cm−1. Light in the
visible spectral range (k0 ∼ 105 cm−1 at 532 nm) has therefore enough momentum to probe
such a dispersion. On the contrary, dispersion domains with zero second derivative (linear
dispersion regions) are regions of the dispersion where PhPs have more electromagnetic nature
(at low wavevectors), or more phononic nature (at high wavevectors).

The LTe and Le branches extrapolate to a limit frequency of 228.3 and 248.1 cm−1 for high
wavevectors, respectively. These frequencies are extraordinary polar phonon frequencies ex-
pressed in the new transverse and longitudinal basis. The polar phonons frequencies of GaSe



29

Wavevector (cm-1)

W
av

en
u
m

b
er

 (
cm

-1
)

LTe

UTe

LTo

UTo
Le

x104

Figure 3.6 PhPs dispersion in a infinite GaSe crystal at an incidence angle of 45◦. The disper-
sion is composed of 3 branches : transverse ordinary (To) in blue, transverse extraordinary
(Te) in green and longitudinal extraordinary (Le) in brown. The prefixes "L" and "U" of the
To and Te modes denote for lower and upper branches, respectively. The horizontal dashed
lines are the frequencies of GaSe polar phonons.

returned by Eq. 3.7 at an angle of 45◦ are 225.3 cm−1 for the Te and 249.7 cm−1 for the Le
polar phonons. This small discrepancy is attributed to the assumptions made in order to
derive Eq. 3.7, extensively discussed in Ref. [60].

The next section discusses the theory of Raman spectroscopy by phonon and PhPs from
GaSe, and demonstrates the capability of this technique for probing the dispersion of PhPs
using visible light.

3.3 Raman scattering by phonon-polaritons

PhPs are infrared excitations that cannot couple to vacuum photons due to their high mo-
mentum mismatch. Near-field techniques presented in Sec. 2.2, where a tip generates high-k
light components, are then used to probe PhP dispersions. Raman scattering uses visible
light to probe infrared excitations. This work aims to show that it is also a convenient means
to probe PhPs.

This section discusses the theory of Raman scattering from phonons and PhPs in GaSe. It
presents the derivation of the Raman tensors and the selection rules. Finally, the expressions
of the Raman intensity in infinite and thin film crystals are overviewed. They can be used
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to compute PhPs Raman spectra and dispersion.

3.3.1 Raman scattering by phonons

Raman scattering, discovered in 1928 by C.V. Raman, is an inelastic scattering process
enabling the probing of infrared excitations using visible light. Upon applying an electro-
magnetic field to a polarizable material, protons and electrons experience opposite Lorentz
force, creating electric dipole moments. The total electric dipole moment per unit volume is
called the polarization density P , and is for weak fields linked to the applied electric field E

by the susceptibility tensor
↔
χ,

P = ϵ0
↔
χ E. (3.32)

In the presence of lattice oscillations, the susceptibility is dynamically modulated. To a first
order, the susceptibility can be written as

↔
χ=

↔
χ0 +

∑
N

 ∂
↔
χ

∂uN


uN =0

uN + · · · , (3.33)

where uN is the crystal lattice displacement from its equilibrium, induced by the propagation
of a phonon mode N , and

↔
χ0 is the non-modulated susceptibility. The Raman tensor of the

vibrational mode N is defined as
↔
RN=

(
∂

↔
χ

∂uN

)
uN =0

[62].

Considering an electromagnetic field of frequency ω and a phonon of frequency ωN , the
polarization density P is composed of 3 harmonic terms at frequencies ω, ω−ωN and ω+ωN .
The scattered field Escat ∝ P is then composed of a field with the same frequency as the initial
field ω (Rayleigh signal) and two other fields at new frequencies ω ± ωN (Raman signals).
The one with a lower frequency corresponds to the Stokes configuration and denotes the
emission of a phonon inside the material. The other with a higher energy corresponds to the
anti-Stokes configuration, and describes the absorption of a phonon. By energy conservation,
the frequency ωN of the absorbed or emitted phonon can be extracted experimentally by
measuring the frequency of the scattered field Escat.

Fig. 3.7 shows the energy diagram of a semi-conductor material along with the electron
transitions involved in Rayleigh and Raman (resonant and non-resonant) light scattering
processes. Only Raman scattering in the Stokes configuration is presented.

For every scattering processes studied, an absorption event of a photon having an energy of
ω promotes an electron from the valence band to a virtual level inside the conduction band.
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Figure 3.7 Light scattering energy diagram from a semi-conductor material. Dashed horizon-
tal lines are virtual levels, having a lifetime of few femtoseconds. Upward arrows correspond
an absorption event, and downward arrows to an emission event. 3 cases of light scattering
processes are presented: a) Rayleigh scattering ; b) Resonant Raman scattering ; c) Non-
resonant Raman scattering. Only the Stokes configuration of Raman scattering is shown.
These processes are discussed in the text. The upper and the lower blue regions are the
conduction and valence bands, respectively. They are separated by the band-gap energy Eg.
ω corresponds to the energy of a photon, while ωN to the energy of a phonon. Due to the low
momentum of light compared to phonons, only transitions near the center of the Brillouin
zone are considered (k ∼ 0).
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These virtual levels are depicted by dashed horizontal lines in the figure. They are located
far from a real energy level and have a very short lifetime of few femtoseconds due to the
Heisenberg uncertainty1.

Fig. 3.7 a) describes the elastic Rayleigh scattering. Quasi-instantaneously after being
promoted to a virtual level, the electron transitions back to the valence band by emitting a
new photon at the same frequency as the initial photon. Fig. 3.7 b-c) describe the inelastic
Raman scattering process. Within the short lifetime of the virtual state, the promoted
electron can relax to a lower energy level by emitting a phonon with a frequency ωN . In
resonance, the energy of the phonon enables the electron to relax to a real state in the
conduction band, as can be seen in Fig. 3.7 b). Most of the time, the electron relaxes to
another virtual level as shown in Fig. 3.7 c). Finally, the electron relaxes to the valence
band by emitting a photon of lower energy ω − ωN than the incident photon.

As the conduction band is a real energy level, Raman scattering is more efficient in resonance
compared to the non-resonant Raman. However, as Raman scattering requires the interaction
of a promoted electron with a phonon on a very short timescale, it remains less probable
than Rayleigh scattering that only involves the relaxation of one electron. As a result, light
scattered from Raman is generally a low efficiency process.

During the Raman scattering process, energy and momentum must be conserved. These
conservation rules yields

ωs = ωi ± ωN (3.34)

ks = ki − qN , (3.35)

with ωi,s and ki,s respectively the frequency and the wavevector of the incident (subscript
-i) and scattered (subscript -s) photon, and qN the wavevector of the emitted or absorbed
phonon.

For visible light around 532 nm, the initial and the scattered photons have a wavevector of
amplitude k0 ∼ 1.2×105 cm−1. In backscattering configuration, the wavevectors of the initial
and the scattered photons are nearly collinear with opposite directions. The probed phonon
wavevector amplitude is then in the order of 2 × k0 ∼ 2.4 × 105 cm−1, approximately 0.3%
of the Brillouin zone (∼ 8.4 × 107 cm−1 for GaSe [63]). As a result, no phonon dispersion
can be measured using Raman spectroscopy, and the wavevectors of the probed phonons are

1For comparison, real energy levels have lifetime on the order of nanoseconds and more.
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very close to zero relatively to the size of the Brillouin zone.

GaSe phonon modes and selection rules

The number of phonon modes allowed in Raman scattering, along with their symmetry, is
derived next for GaSe. In this discussion, only group theory is applied, and the Raman tensor
of each mode is presented.

ϵ-GaSe is a non-centrosymmetric uniaxial crystal that belongs to the D3h space group. With
8 atoms per unit cell, it has 24 normal modes of vibration (3 acoustic and 21 optical) [64].
These normal modes transform as Γ = 4(A′

1 + A′′
2 + E ′ + E ′′) 2 [65, 66]. One acoustic mode

has a A”2 symmetry and the two other, degenerate, have a E’ symmetry.

Due to the x− y plane symmetry of uniaxial crystals, the two dimensional E′ and E′′ modes
are two-fold degenerate. Moreover, from the 24 normal modes, half are Davydov doublets.
There are therefore 12 pairs of normal modes with atoms of top and bottom layers oscillating
whether in phase or out of phase [67]. These pairs of modes are also degenerate due to the
weak interlayer interaction in GaSe crystals [67,68].

The list of non degenerate optical phonon modes, including their atomic displacement and
their energy, are presented in Table S1. The listed frequencies are averaged values found in
the literature, summarized in Table S2.

From the character table presented in Table S3 [64, 66], the Raman tensor representation is
Γ(

↔
R) = 2A′

1 +E ′ +E ′′. For a transition to be allowed in Raman, the integral ⟨Ψini|
↔
R |Ψfin⟩

must be non-zero. This matrix element therefore needs to include a fully symmetric A’1
component, leading to the selection rule

Γ(Ψini) ⊗ Γ(
↔
R) ⊗ Γ(Ψfin) ⊃ A′

1, (3.36)

where Γ(Ψini) and Γ(Ψfin) are the symmetry of the initial and the final vibrational state.
The initial state is the ground state, therefore totally symmetric (Γ(Ψini) = A′

1). Moreover,
only first order transitions are considered. As a result, for a Raman transition to be allowed,
the symmetry of the final state must satisfy

A′
1 ⊗ (2A′

1 + E ′ + E ′′) ⊗ Γ(Ψfin) ⊃ A′
1. (3.37)

Using the character table of Table S3, vibrational mode with symmetry Γ(Ψfin) = A′
1, E′

2Mulliken’s symbols are used to assign the symmetry of the normal modes. [59].
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and E′′ are allowed in Raman for crystals of the D3h space group.

From the transformation properties of these modes presented in the D3h character table
[60,64], the Raman tensors are

↔
RA′

1
=


a 0 0
0 a 0
0 0 b

 , ↔
RA′′

2
(z) = 0, (3.38a)

↔
R

(1)
E′ (x) =


0 c 0
c 0 0
0 0 0

 , ↔
R

(2)
E′ (y) =


c 0 0
0 −c 0
0 0 0

 , (3.38b)

↔
R

(1)
E′′ =


0 0 −d
0 0 0

−d 0 0

 , ↔
R

(2)
E′′ =


0 0 0
0 0 d

0 d 0

 , (3.38c)

where a, b, c and d are constants, and x, y and z the electric dipole orientation of polar
modes.

The scattering intensity of a normal mode N , considering an infinite crystal, can be written
as [60]

IN = C | êi·
↔
RN ·ês |2 . (3.39)

C is a constant, êi and ês the polarization of the incident and the scattered photon, and
↔
RN the Raman tensor of the normal mode N . This equation also defines the polarization
selection rules of every Raman modes.

3.3.2 Raman scattering by polar phonons and phonon-polaritons

The electromagnetic field accompanying a polar excitation, arising from the oscillating electric
dipole moments, also modulates the susceptibility of the material. This electro-optic mod-
ulation is described by a χ(2) process, and is therefore only present in non-centrosymmetric
crystals. This contribution to the susceptibility gives, at first order,

↔
χ=

↔
χ0 +

∑
N

 ∂
↔
χ

∂EN


EN =0

EN + · · · . (3.40)
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EN is the electromagnetic field accompanying the polar excitation mode N , and
↔
χ

(2)
N =(

∂
↔
χ

∂EN

)
EN =0

is its associated second order susceptibility.

Crystals of the D3h space group have only 4 non-vanishing terms in their second order sus-
ceptibility tensor. They are linked by the relation χyyy = −χyxx = −χxxy = −χxyx [69]. In a
contracted form3, the susceptibility tensors of GaSe then write as

↔
χ

(2)
x =


0 −χ22 0

−χ22 0 0
0 0 0

 , ↔
χ

(2)
y =


−χ22 0 0

0 χ22 0
0 0 0

 , ↔
χ

(2)
z = 0. (3.41)

The total variation of the susceptibility responsible for first order Raman scattering, including
the contributions of the lattice motion and the electro-optic modulation, can be written using
Eqs. 3.33 and 3.40 as [61]

δ
↔
χ=

∑
N

 ∂
↔
χ

∂uN


uN =0

uN +
∑
N

 ∂
↔
χ

∂EN


EN =0

EN , (3.42)

for any normal mode N . The relation between uN and EN defined in Eq. 3.18 leads to

δ
↔
χ=

∑
N

(
e∗

m

1
(ω2

TO,N − ω2)
↔
RN +

↔
χ

(2)
N

)
EN , (3.43)

where
↔
RN is the contribution of lattice oscillation defined in the last section. ωTO,N = ωTO,∥

if the normal mode N has a A symmetry, and ωTO,N = ωTO,⊥ if it has a E symmetry.
↔
χ

(2)
N = 0

if N does not correspond to a polar mode. The total Raman tensor of the normal mode N
therefore writes

↔
R
tot

N = αN
↔
RN +

↔
χ

(2)
N , (3.44)

with αN = e∗

m
1

(ω2
T O,N −ω2) .

3Thanks to permutation symmetries in crystals, the notation χijk can be contracted into χil using the
following rules : the i subscript is replaced following x → 1, y → 2 and z → 3, the jk subscripts are replaced
following xx → 1 ; yy → 2 ; zz → 3 ; yz or zy → 4 ; xz or zx → 5 ; xy or yx → 6. This is referred as the
piezoelectric contraction in Ref. [69]
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Raman tensors in the phonon-polaritons normal coordinates

As seen in Sec. 3.2, the PhP normal coordinates form an orthogonal basis, in which it is more
convenient to work. The wavevector of a PhP, once projected on the crystal axis coordinates,
gives

q = q(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)), (3.45)

with ϕ is the angle between q and the x-axis and θ between q and the z-axis (parallel to the
crystal uniaxis). The PhP coordinates are defined as T̂ o ⊥ (ẑ, q), T̂ e ⊥ (T̂ o, q) and L̂e ∥ q.
The transformation matrix from the crystal coordinates to the PhP coordinates is [24]

T =


− sin(ϕ) cos(ϕ) 0

− cos(θ) cos(ϕ) − cos(θ) sin(ϕ) sin(θ)
sin(θ) cos(ϕ) sin(θ) sin(ϕ) cos(θ)

 . (3.46)

Upon applying the transformation


↔
R
tot

To
↔
R
tot

Te
↔
R
tot

Le

 = T


↔
R
tot

x
↔
R
tot

y
↔
R
tot

z

 , (3.47)

the Raman tensors expressed in the PhPs normal coordinates are

↔
R
tot

To = (α⊥c− χ22)


cos(ϕ) − sin(ϕ) 0

− sin(ϕ) − cos(ϕ) 0
0 0 0

 , (3.48a)

↔
R
tot

Te = (α⊥c− χ22 cos(θ))


− sin(ϕ) − cos(ϕ) 0
− cos(ϕ) sin(ϕ) 0

0 0 0

 , (3.48b)

↔
R
tot

Le = (α⊥c− χ22 sin(θ))


sin(ϕ) cos(ϕ) 0
cos(ϕ) − sin(ϕ) 0

0 0 0

 . (3.48c)
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Raman conservation rules

The same energy and momentum conservation rules as for Raman scattering by phonons
hold

ωs = ωi ± ωPhPs (3.49)

ks = ki − q, (3.50)

with ωPhPs and q the energy and the wavevector of the emitted or absorbed PhPs. The
probed wavevectors amplitude is in the range of ki − ks < q < ki + ks, and depends on the
Raman scattering geometry considered. These geometries are shown in Fig. 3.8.

For near-forward scattering, the incident and the scattered photons travel in the same direc-
tion and therefore correspond to the left side of the inequality. The range of PhP wavevectors
probed is between 0 and k0 ∼ 1.2 × 105 cm−1, considering initial and scattered photons with
a wavelength of 532 nm (ωPhPs ≪ ωi,s). It covers all the dispersion of PhPs from bulk GaSe
crystals, as the dispersive region of PhPs is located between wavevectors of 0 and 3 × 104

cm−1, as can be seen in the PhPs dispersions displayed in Fig. 3.6. Therefore, Raman
scattering in the near-forward configuration can probe the PhP dispersion from bulk GaSe.

In the backward geometry, the incident and the scattered photons propagate in opposite
directions. It corresponds to the right side of the inequality and yields PhPs with higher
wavevectors than in the near-forward geometry. The probed PhP wavevectors range between
k0 and 2 ×k0 ∼ 2.4 × 105 cm−1. Therefore, no PhP dispersion can be measured in bulk GaSe
crystals in this geometry.

For infinite crystals, the Raman intensity of a mode N including the lattice oscillation and
the electro-optic contributions to the susceptibility modulation is

IN = C | êi · (αN
↔
RN +

↔
χ

(2)
N ) · ês |2 . (3.51)

Raman scattering intensity of phonon-polaritons from 2D materials

The case of a 2D material with infinite lateral and restricted vertical dimensions is now
considered. The wavevector of a PhP propagating in such materials can be decomposed in
terms of in-plane (subscript ∥) and out-of-plane (subscript ⊥) components. The out-of-plane
component is collinear to the crystal uniaxis. Considering angle and frequency dependent re-
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Figure 3.8 Near-forward and backscattering Raman geometries. ki,s is the wavevector of the
incident (subscript -i) and the scattered (subscript -s) photon. qPhPs is the wavevector of
the emitted PhPs.

fractive index n(θ, ω) of the crystal, the projected components from the conservation relation
of Eq. 3.50 writes as

q∥ = 2π [n(θi, ωi)σi sin(θi) − n(θs, ωs)σs sin(θs)] (3.52a)

q⊥ = 2π [n(θi, ωi)σi cos(θi) − n(θs, ωs)σs cos(θs)] . (3.52b)

θi,s are the initial and scattered photon wavevector angles with respect to the crystal uniaxis
and σi,s = 1/λi,s the wavenumber of the incident and the scattered photons.

Mills, Chen and Burstein proposed a general expression for the Raman scattering intensity
of volume, guided, and surface PhPs in thin crystal films [70]. Sasaki and Ushioda adapted
and simplified the writing of their result, leading to the following expression [38]

IN = A
nωP hP s

+ 1
d

| (êi·
↔
R
tot

N ·ês)
∫ d/2

−d/2
ei∆k⊥z⟨EN(z)⟩dz |2 δ(∆k∥ − q∥)HE

N(ω, θ), (3.53)

where A is a constant, nωP hP s
the Bose-Einstein occupation factor, d the thickness of the

crystal, and ⟨EN(z)⟩ the time-averaged PhP electric field along the out-of-plane axis. ∆k⊥ =
k⊥,i − k⊥,s is the orthogonal wavevector difference between the incident and the scattered
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photons, and δ(∆k∥ − q∥) is the conservation rule on the in-plane wavevectors, with ∆k∥ =
k∥,i − k∥,s. HE

N(ω, θ) is the Hopfield coefficient defining the electromagnetic portion of energy
stored in the PhP, derived by Irmer et. al. [39] and added to the Raman intensity by
Bergeron [24].

Relaxed Raman conservation rules in thin crystals

As seen in Eq. 3.53, no wavevector conservation rule exists for the out-of-plane component.
When the thickness of the crystal approaches the propagation length of a PhP (∼ 10 µm in
thin hBN crystals [34]), its out-of-plane wavevector q⊥ is quantized by a multiple of π/d.
This relaxes the wavevector selection rule on the out-of-plane component and PhPs modes
with k⊥,i − k⊥,s ̸= q⊥ become accessible [37,71].

The range of PhP wavevectors accessible via Raman backscattering are only restricted by
the in-plane component. Because PhPs weakly scatter visible light, θi ∼ θs is assumed in
the backscattering geometry [24]. Moreover, the parallel wavevector is conserved when the
incident light is refracted from air to the GaSe crystal. Rewriting the conservation rule from
Eq. 3.52b leads to

q∥ = 2π sin(θi) [2σi − σPhPs] , (3.54)

where σPhPs is the PhP wavenumber. Considering a PhP wavenumber of σPhPs = 240 cm−1

and an excitation source at 532 nm, the range of accessible PhP wavevectors in the backscat-
tering configuration is located between 0 and 2 × 105 cm−1. It makes the dispersion of PhPs
from GaSe accessible with Raman backscattering.

3.4 Phonon-polaritons in 2D materials: numerical modeling

This section presents the numerical models used to compute PhP dispersion curves. An
analytical solution for a symmetric waveguide is first presented. Then, a matrix formalism
enabling PhP field calculations in a 1D-multilayer system is presented. PhP Raman spectra
as a function of the PhP wavevector are computed, which allows the calculation of PhP
dispersions. Finally, a model using the FEM was built to compute PhPs fields in a 2D
geometry.
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3.4.1 Symmetric waveguide model

The dispersion of PhPs propagating in a GaSe thin film suspended in air is presented next.
The derivation was first made by Sasaki in Ref. [38], and Bergeron added methods to avoid
numerical instabilities [24]. The waveguide transverse electric (TE) and transverse magnetic
(TM) transcendental equations are presented, along with an example of calculated PhPs
dispersion curves.

The geometry of the waveguide, composed of three layers, is presented in Fig. 3.9. The GaSe
layer has a thickness d and an infinite width and depth. Thanks to the rotational symmetry
around the crystal uniaxis (z-axis), the propagation of the PhP is assumed in the x− z plane
without loss of generality. In each region, the PhP electric field writes as [24]

E1(r, t) = E0
1e
iqz,1zei(qxx−ωt) (3.55)

E2(r, t) =
(
E0+

2 eiq2,zz + E0−
2 e−iq2,zz

)
ei(qxx−ωt) (3.56)

E3(r, t) = E0
3e
iqz,3zei(qxx−ωt). (3.57)

qβ,j is the projection of the PhP wavevector in the direction β = x, z and the region j = 1, 2, 3,
and E0

j =
(
E0
jx, E

0
jy, E

0
jz

)T
is the field amplitude in the region j. The + and − signs denote

for the amplitude of the wave propagating in the same direction and in the opposite direction
of the z-axis, respectively.

The continuity of the in-plane wavevector component writes qx1 = qx2 = qx3 = qx. This
component is always real since a propagative PhP is considered along the x-axis. The out-of-
plane wavevector is however not continuous at interfaces. An evanescent wave is considered
outside the GaSe slab, so imaginary out-of-plane wavevectors qz1 = iα = −qz3 are considered
in air (regions 1 and 3), where qz1 =

√
ϵairω2/c2 − q2

x and ϵair ∼ 1. Finally, a complex out-
of-plane wavevector qz2 is assumed in the GaSe core to account for propagative and surface
mode solutions. It corresponds to the real and the imaginary part of qz2, respectively. The
transcendental equations for TE and TM modes are [24]

TE : tan(qz2d) = 2qz2α

q2
z2 − α2 , qz2 =

√
ϵ⊥(ω2/c2) − q2

x, (3.58)

TM : tan(qz2d) = 2ϵ⊥qz2α

q2
z2 − ϵ2

⊥α
2 , qz2 =

√
ϵ⊥(ω2/c2) − (ϵ⊥/ϵ∥)q2

x, (3.59)
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Figure 3.9 Geometry of the symmetric waveguide. q is the wavevector of the propagating
PhPs mode and d the thickness of the GaSe core.

where ϵ⊥,∥ is the permittivity of GaSe.

TE solutions correspond to guided To waves, whose polarization exclusively sees the per-
mittivity perpendicular to the crystal uniaxis, ϵ⊥. TM solutions describe Te and Le guided
modes, in addition to the two surface modes arising from the two air/GaSe interfaces [38].

An example of dispersion curves obtained by solving the transcendental equations is presented
in Fig. 3.10. It shows the dispersion of guided and surface PhP modes propagating in a 1 µm
thick GaSe waveguide. An infinite number of guided modes exist in the waveguide, so only
few branches are presented per mode. Since the modes propagate along the in-plane axis
(x-axis), the dispersion is presented in terms of in-plane wavevector qx. Wavevectors are
displayed in a logarithmic scale to better visualize the rapid variation of the ordinary and
surface branches at lower wavevectors, and the dispersion of the extraordinary modes at
higher wavevectors. This calculated dispersion is compared with the dispersion of PhPs in
an infinite GaSe crystal shown in Fig. 3.6.

By vertically confining PhPs, guided Tom, Tem and Lem modes are quantized by their out-
of-plane wavevector qz. The total wavevector amplitude is given by q =

√
q2
x + q2

z , where
qz = m× π/d and m is a natural number.

As can be seen in Fig. 3.10, every PhP mode extrapolates to the dispersion of light at low
wavevectors, due to the air playing the role of the waveguide cladding. The anti-crossing re-
gion of each fondamental mode (m = 1) is located at higher wavevectors when compared to
the PhPs dispersion in an infinite GaSe crystals. The dispersion of the Le1 is for example lo-
cated between in-plane wavevectors qx of 104 and 105 cm−1. The PhPs wavevector amplitude
q is therefore between 3.3 × 104 and 105 cm−1. This region was located around q = 3 × 103
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Figure 3.10 PhP ispersion curves in a 1 µm thick GaSe waveguide suspended in air calculated
with the analytical model. The dispersion is presented in terms of in-plane wavevector qx and
on a logarithmic scale. a) corresponds to TE solutions, while b) and c) are TM solutions.

cm−1 in an infinite GaSe crystal as shown in Fig. 3.6, indicating that spatial confinement
significantly increased the PhP wavevectors. Finally, the dispersion of every guided polari-
ton mode extrapolates to polar phonon frequencies at higher wavevectors. These frequencies
correspond to the polar phonon frequencies calculated with Eqs. 3.7 for a propagation angle
of 90◦ with respect to the uniaxis.

From all guided modes, only the Lem are of interest because the other are not observed
experimentally. The Lem lie in the type-II hyperbolic region between A”

2(LO) and E’(LO)
phonon frequencies. They are transverse magnetic guided modes, with their electric field
within the plane of incidence. At a fixed wavevector, the frequency of the mth order mode
decreases with increasing m.

The boundary conditions defined by the two air/GaSe interfaces of the waveguide enable the
propagation of two surface modes, labeled Sp1,2. They are of great interest because of their
sensitivity to their dielectric environment. These modes are found between the E’(TO) and
the A”

2(LO) phonon frequencies. They are located in a type-II hyperbolic frequency region
between E’(TO) and A”

2(TO), and in the double Reststhralen band between A”
2(TO) and

A”
2(LO) phonons. These surface modes are further discussed in Chapter 5.

3.4.2 4x4 matrix formalism

A 4x4 matrix formalism to calculate the distribution of the PhP electric field intensity in a
multilayer system in 1D is utilized in Refs. [24, 72]. The model considers layers with infinite
width and computes the evolution of the field components along the out-of-plane axis (z-
axis) of a mode propagating in the x − z plane. Their article comes with a Matlab code in
which the formalism is implemented. It was then adapted by Bergeron to compute PhPs
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fields in a multilayer system containing a GaSe layer. Since no additional functionality was
implemented during this work, an overview of this matrix formalism is presented next.

The algorithm uses a 4x4 matrix formalism based on Maxwell’s equations. The electric field
vector is composed of four components and is written as

E⃗ =


Ep
trans

Ep
refl

Es
trans

Es
refl

 . (3.60)

Ep,s
trans and Ep,s

refl are the electric field amplitudes of the p,s-polarized transmitted and reflected
field components. The index j is used to denote the layer number: j = 0 corresponds to
the incident material and j = N + 1 stands for the substrate. N is the number of layers
composing the system. The boundary conditions between the layers j− 1 and j are encoded
in a set of matrices A,

Aj−1E⃗j−1 = AjE⃗j. (3.61)

The propagation matrix P j is defined to describe the propagation of each field component
inside the layer j

P j =


e−ikz

j1dj 0 0 0
0 e−ikz

j2dj 0 0
0 0 e−ikz

j3dj 0
0 0 0 e−ikz

j4dj

 , (3.62)

where dj is the thickness of the layer j. kzjβ is the out-of-plane wavevector of the field
component β = 1, 2, 3, 4 from the vector E⃗. The transfer matrix T j, taking into account the
boundary conditions and the propagation of the field inside the layer j, is defined as

T j = AjP jA
−1
j . (3.63)

The matrix T tot describing the propagation of a PhPs field through the N layers of the system
therefore writes as the product

T tot =
N∏
j=1

T j. (3.64)
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Finally, boundary conditions imposed by the incident medium (j=0) and the substrate
(j=N+1) are added, leading to the total transfer matrix

ΓN = A0T totAN+1. (3.65)

The field from the incident medium can then be related to the field at the substrate by the
simple relation

E⃗0 = ΓN E⃗N+1. (3.66)

In order to obtain the field amplitude at any point in the structure, the z-axis is discretized
and the propagation matrix of every layer j is divided into dj/dz submatrices, where dz is
the subdivision step. These submatrices are then consecutively applied to the field vector in
order to evaluate the PhP field along the whole multilayer system.

From the total transfer matrix ΓN , the reflection and transmission coefficients of the multi-
layer system can be calculated. For instance, the rss and rpp coefficients are given by [73]

rss = Γ′
11Γ′

43 − Γ′
41Γ′

13
Γ′

11Γ′
33 − Γ′

13Γ′
31
, rpp = Γ′

21Γ′
33 − Γ′

23Γ′
31

Γ′
11Γ′

33 − Γ′
13Γ′

31
. (3.67)

Resonances of the imaginary part of rss and rpp are respectively attributed to the presence of
guided TE and TM modes propagating inside the multilayer system [24]. These coefficients
can also be used to compute the dispersion of guided and surface PhPs modes inside the
multilayer system.

Phonon-polariton field in an asymmetric GaSe waveguide

In this work, samples are placed onto a silicon (Si) substrate with a 100 nm thick SiO2 thermal
oxide layer. Frequency dependent x and y polarization PhPs electric field intensity inside
this multilayer system is presented in Fig. 3.11 for a GaSe thickness of 1 µm and a PhPs
in-plane wavevector of qx = 2 × 104 cm−1.

To better visualize fast variations of the PhP electric field, a logarithmic scale is used. It
writes as

Ilog = log10(1 + S × Ilin)
log10(S) , (3.68)
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Figure 3.11 PhP electric field map intensity in an asymmetric waveguide as a function of the
PhP frequency, for an in-plane wavevector of qx = 2 × 104 cm−1. The multilayer structure is
composed, from top to bottom, of air/GaSe/SiO2/Si. The GaSe and the the SiO2 layers have
a thickness of 1 µm and 100 nm, respectively. The color map has a logarithmic scale with
a scaling factor of S = 10. The PhP electric field intensity is normalized by its maximum
value.
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where S is a scaling factor. In the numerator, this factor is used to artificially increase the
order of magnitude of the computed field intensity, that can be a low as approximately 10−2

a.u.. This locates the argument of the logarithm function in a region where its variation
is slower than the one obtained with a linear scale. Adding 1 in the argument of the loga-
rithm function prevents to have negative values at the output of the function. Finally, the
denominator is a renormalization factor.

The permittivity of GaSe is calculated with Eq. 3.26, with a low broadening factor of
Γ⊥ = Γ∥ = 0.5 cm−1 to better separate the modes4. The permittivity of SiO2 is interpolated
for each frequency by using the data of Ref. [74]. Finally, the permittivity of Silicon is ϵSi =
11.7 in the frequency region of interest [75].

The upper panel of Fig. 3.11 shows the y polarization electric field intensity, which corre-
sponds to the To PhP. Only the fundamental To1 is visible at the considered wavevector,
very close to the E’(TO) phonon. Its field is distributed through the whole GaSe slab, and
extends approximately 1 µm in the Si substrate and in the air. There is also a constant
background at the air/GaSe interface that is frequency independent.

The bottom panel, depicting the x polarization polariton field intensity, shows extraordinary
and surface PhPs. Two Te modes are visible. The fundamental Te1 has one node in the
middle of the GaSe slab, while the Te2 has two. The fundamental Le1 mode is also identified,
along with the weaker Le2 spotted between the A”

2(LO) phonon and the Le1 polariton. The
spatial field distribution of these guided PhPs modes indicates that they are guided modes
inside the GaSe slab.

As expected, two surface modes are found. From their spatial field distribution, they are
labeled Sp(air) and Sp(SiO2). The Sp(air) is confined at the air/GaSe interface, and extends
both in the air and in the GaSe slab. The Sp(SiO2) field is however not strictly confined
to only one interface. It is located at both the air/GaSe and GaSe/SiO2 interfaces, with a
non-negligeable field intensity inside the GaSe slab. Despite that, this mode is necessarily a
surface mode as it is located inside the double Reststhralen frequency region of GaSe.

These frequency dependent field maps can be combined with Eq. 3.53 to compute the
associated Raman spectrum. By considering several wavevectors qx, the Raman dispersion
curve of PhPs can therefore be computed. It can be realized for any GaSe thickness, and
more extensively for any multilayer system that supports PhPs.

4Γ = 1.8 cm−1 is usually used [24].
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3.4.3 Finite element method model

The previous model is limited to one dimension. To improve the modeling of PhP propagat-
ing in thin GaSe waveguides, a FEM model was developed. It uses the commercial software
COMSOL and computes the PhP wavevector and field distribution in two different 2D ge-
ometries. The two geometries are displayed in Fig. 3.12. As in the previous sections, PhPs
are propagating along the x-axis and the uniaxis of the crystal is parallel to the z-axis.

The geometry of the symmetric waveguide, displayed in Fig 3.12 a), is the same as in Sec.
3.4.1. The dispersion calculated with this model can therefore be compared with the analytic
solution. Continuous periodic conditions are set at the lateral edges of the model to simulate
layers of infinite width. Scattering boundary conditions are set at the top and bottom of the
geometry, with at least 100 µm of air above and below the GaSe slab (not shown in Fig 3.12
for clarity). This prevents the upper and bottom boundaries to influence the calculated PhP
field.

The geometry of the asymmetric waveguide corresponds to the one considered in Sec. 3.4.2.
The same boundary conditions as in the symmetric geometry are considered. The Si layer
thickness is set to 5 µm to avoid reflection of the PhP at the Si/air interface which could
influence the calculated field map.

Geometry discretization

The second step into a FEM modeling is the discretization of the model geometries. This
discretization influences the quality of the computation, as a bad mesh can leads to false
results. In this work, a triangular mesh is considered because of the simple geometry of the
models. The most used mesh element quality metric is the skewness of the mesh element

Q = min
i=1,2,3

(
1 − max( θi − θe

180 − θe
,
θe − θi
θe

)
)
. (3.69)

θe is the angle that provides an equilateral mesh element, and θi is the angle of the vertex i
where i = 1, 2 or 3. A quality Q of 1 indicates that the mesh element is equilateral, providing
the best computation results.

The number of mesh elements should also be controlled to provide enough resolution and
reasonable computation time for the modeled problem. It is controlled by the maximum
element size allowed in each domain. With hi the thickness of the layer i, the maximum
element size is set to hGaSe/25 for GaSe, hSi/15 for Si, and hSiO2/15 for the thermal oxide.
A maximum element size of 0.5 µm is chosen in the air domains to have at least 4 mesh
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Figure 3.12 Geometry of the a) symmetric and b) asymmetric waveguide of the FEM model.
The width of the two geometries is set to 2 µm. The Si layer has a thickness of 5 µm, and
the SiO2 layer has a thickness of 100 nm. The bottom and top air layers extend to at least
100 µm away from the waveguide. In this case, a 5 µm thick GaSe layer is considered.

elements along the width of the geometry. The spatial variation of the field is indeed low in
these domains, so larger mesh elements are considered to reduce the computation time.

An example of geometry discretization is shown in Fig. 3.13. The color scale depicts the
quality of each mesh element calculated with Eq. 3.69. Good quality elements are depicted
in green, whereas bad quality elements are shown in red. As can be seen, the mesh is
regular and of good quality when far from domain frontiers. However, when approaching
these frontiers, the element quality worsens due to the progressive change in element size.
Since these regions are often rich in boundary conditions, the element quality should be well
controlled to compute satisfying results.

To evaluate the quality of the generated mesh, bar charts of the elements quality are shown
in Fig. 3.14. As can be seen, the average mesh elements quality of the two geometries is very
close. There is no general rule on the sufficient mesh quality required for a FEM calculation,
as it depends on too many aspects of the model and on the user’s needs. For this work,
the obtained average mesh element quality is sufficient. It is shown next by comparing the
calculated PhP dispersion with the analytical solution, and by analyzing PhP field maps.
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Figure 3.15 Comparison between the analytic (solid lines) and finite element calculation
(crosses) of the PhPs dispersion. The solid black line is the dispersion of light in vacuum.
The inset zooms onto the dispersion of surface modes.
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Comparison of the phonon-polaritons dispersion between the FEM and analytic
models

In the FEM model, the frequency of the PhP is fixed and its associated in-plane wavevector
qx is returned by approximating the eigenvalues of the wave equation. To assess the quality
of the FEM model, the PhP dispersion from a GaSe slab suspended in air is compared with
the analytical solution presented in Sec. 3.4.1.

The results are presented in Fig. 3.15 for a 5 µm thick GaSe waveguide. The solid curves
show the analytical solution and the crosses show the in-plane wavevectors returned by the
FEM model at a given frequency. The ordinary, extraordinary, and surface PhPs modes are
depicted in blue, green, and brown, respectively. The inset zooms onto the two surface modes
close to the light line. As can be seen, there is a perfect agreement between both calculation
strategies.

However, the PhP dispersion calculation with the FEM model is cumbersome. The software
returns many wavevectors that respect the fixed tolerance, and the correct wavevector must
be found manually by looking at its associated field map. This approach is therefore not used
to compute the dispersion of PhPs, but it remains relevant for calculating PhP field maps.

Polariton field maps

Electric field distributions of Lem PhP modes propagating along the x-axis in the asymmetric
waveguide are shown in Fig. 3.16. They are calculated for a 1 µm thick GaSe slab and for
a polariton frequency of 250 cm−1. The Ex field component of the three first Le modes is
displayed. They are found at in-plane wavevectors qx of 3.3 × 104 cm−1 for the Le1, 8.0 × 104

cm−1 for the Le2 and 1.3 × 105 cm−1 for the Le3.

As can be seen, these modes are guided in the GaSe slab with a very low field intensity
outside the slab. The asymmetry of the waveguide induces a slight asymmetry in the spatial
field distribution. Moreover, the quantization of the out-of-plane wavevector qz is visible with
the field nodes along the z-axis in the Le2 and Le3 field distributions. Finally, since the layers
have infinite widths, the field intensity is constant along the y-axis.

The FEM model was initially developed to study horizontal confinement of PhPs. Some
difficulties however appeared, such as non-physical field map distributions when reducing
the waveguide dimensions. Despite contacting the software support, no solution to overcome
these problems has been found yet. No computational method is then available to model
horizontal confinement of PhPs for the moment. This could be combined with vertically
confined PhPs models to study PhPs guided in 1D waveguides.
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Figure 3.16 Spatial field distribution of a PhP propagating along the x-axis in the asymmetric
waveguide with a 1 µm thick GaSe slab. The PhP has a frequency of 250 cm−1. The PhP
modes displayed are the a) Le1, b) Le2, and c) Le3. The color bar corresponds to the PhP
normalized Ex field component.
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CHAPTER 4 SAMPLE FABRICATION AND RAMAN SETUP

In this work, Raman scattering is used to study PhPs from thin GaSe samples. This chapter
presents all the experimental aspects relating to this thesis. The first section discusses the
production of thin GaSe samples, along with the characterization of their size. The second
presents the Raman experimental setup and the processing of raw spectral data.

4.1 Sample preparation and characterization

The weak interlayer bonding of GaSe crystals is exploited to produce thin samples using
mechanical exfoliation. An emphasis is put on the protection of samples against oxidation
and external contaminations. Sample dimensions are measured by optical and atomic force
microscopy.

4.1.1 Mechanical exfoliation

Van der Waals crystals are layered materials where covalent bonds between atoms prevail
in one plane. It defines monolayers bound together via the weaker Van der Waals force.
By peeling away layers, atomically thin materials can be produced. Commonly called 2D
materials, they easily generate strong quantum confinement effects in the stacking direction
[5].

The most common technique used to prepare 2D materials is mechanical exfoliation, first
used to produce graphite monolayers using regular adhesive tape. A more sophisticated
material called polydimethylsiloxane (PDMS), a well known silicon-based organic polymer,
is now more generally utilized. Its appeal comes from its viscoelasticity that depends on the
speed of the pullout of the PDMS from a surface. For fast pullouts, the PDMS behaves like
an elastic material, while it becomes viscous for slow ones. Playing with these characteristics
enables either to transfer a raw flake from one surface to another (slow pullout) or to break
interlayer bonds to produce thinner samples (fast pullout). This allows the fabrication of
2D materials as thin as a single monolayer and deterministic transfer to fabricate complex
heterostructures involving several Van der Waals materials [4].

The process used to produce thin GaSe flakes is presented Fig. 4.1. First, a large flake is
extracted from a GaSe crystal using a razor blade and is placed on a flat PDMS stamp.
Approximately ten fast pullouts are then made on another flat PDMS stamp, as shown in
Fig. 4.1 a), reducing the thickness of GaSe flakes to a few tens of microns. Then, using
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2 PDMS stamps
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circular PDMS stamps and 
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1 slow pullout between 
a circular PDMS stamp 

onto a Si substrate
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PDMSGaSe SiO2/Sia) b) c)

Figure 4.1 Exfoliation process followed to produce thin GaSe flakes. PDMS is shown in grey,
SiO2/Si substrate in blue, and GaSe flakes in brown. The number next to double arrows is
the amount of pullouts approximately done. A circular PDMS stamp allows more control
over the transfer between the stamp and the substrate, for which a slow pullout is needed.
a) a thick GaSe sample is cleaved from a mono-crystal and deposed onto a PDMS stamp.
10 fast pullouts are then made between 2 PDMS stamps to reduce the sample thickness. b)
A circular PDMS stamp is used to do 5 more fast pullouts. c) the remaining flakes from the
circular PDMS stamp are transferred onto the substrate with a slow pullout.

one of these two previous stamps, five more fast pullouts using a circular PDMS are done
to get GaSe samples with a thickness ranging from approximately 50 nm to 1 µm. Finally,
the circular stamp, facilitating the transfer to another surface, is used to move the remaining
flakes onto a SiO2/Si substrate by doing one final slow pullout.

To study the samples thickness dependence of PhP frequencies, samples between 30 nm and
1 µm were produced. Many samples under 100 nm were studied to explore strong confinement
behaviors and to find the limit at which PhPs can be probed. For studies not related to
vertical confinement, thicker samples (>300 nm) were produced.

A disadvantage of using PDMS is that it leaves residues on both the GaSe sample and the
substrate. These residues come from the PDMS itself and dust particles sticking to it. Hence,
exfoliation must be done with care and is preferable to minimize the number of pullouts on
the substrate.

The presence of contamination can easily be observed by the AFM. Images of contaminated
and clean regions are shown Fig. 4.2. As can be seen, the image from a contaminated sample
is blurred, making the determination of its dimensions uncertain. A clean and uncontami-
nated sample is a requirement for all experiments presented in this thesis, as shown in Fig.
4.2 b).
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Figure 4.2 Impact of the presence of contamination on AFM images. a) The PDMS con-
taminated the sample and the substrate with residues and dust particles. The uncertainty
on the sample thickness is 6%. b) The sample and the substrate are clean. The thickness
uncertainty is 1%.

4.1.2 Protecting sample from oxidation

Like many other 2D materials, GaSe is subject to oxidation. Oxidized samples prohibit the
observation of PhPs since oxidation products have been shown to generate Raman signals in
spectral regions of interest. For samples used in this work, degradation becomes significant
on a time scale of about an hour in ambient air and temperature. However, when illuminated
with a laser source, this time scale reduces to minutes and becomes an important issue for
the Raman study of PhPs [76].

To prevent oxidation reactions, dioxygen and water vapor must be removed from the envi-
ronment of GaSe [77]. Samples are placed into a cryostat and pumped to a pressure of 10−6

mBar to remove ambient air. Other possible techniques to protect the samples are adding
an inert gas instead of vacuum so no reaction can happen or using hBN layers to cover the
GaSe flakes. [78]

The latter is not convenient since it requires the identification of interesting GaSe samples
prior to deterministic transferring of h-BN flakes. It moreover requires several extra manip-
ulations, reducing sample yield. However, when fabricating devices like GaSe nanoribbons,
h-BN encapsulation could be an interesting approach.
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4.1.3 Dimensional characterization

An optical microscope was used to locate potentially interesting flakes and estimate their
lateral dimensions. Their thickness was measured using an AFM in tapping mode. To avoid
oxidation, they were measured right after performing all Raman measurement in vacuum, or
store in vacuum awaiting AFM availability.

AFM images were post-processed to extract the thickness along line profiles perpendicular to
samples edge. In order to assess the validity of the thickness measurement, many line profiles
were extracted at different locations to confirm the repeatability. Then, one line profile
was selected. The average heights of the substrate and the sample as well as the standard
deviation (RMS) were gathered. Finally, the extracted sample thickness is h = µsample−µsubs

with an uncertainty given by σ = ±
√
σ2
sample + σ2

subs, where µ denotes the averaged height
and σ the standard deviation.

Fig. 4.3 shows an example of an extracted line profile of a 201 ± 2 nm thick GaSe sample.
The chosen region of the sample is flat and with few irregularities. As a result, the extracted
line profile displays smooth plateaus on both the substrate and the sample.

Despite the AFM resolution of approximately 1 nm, the sample quality and contaminations
from the PDMS can lower the resolution. The experimental uncertainty on the measured
thickness is below 5% of the measured thickness for most samples studied in this thesis. For
some samples however, it could be as high as 14%. In this work, uncertainties are reported
along with sample thicknesses.

4.2 Phonon-polariton measurement

This section discusses central experimental aspects of the studies of PhPs. The Raman
optical setup is first presented along with the characteristics of the main optical components.
A knife-edge test is then performed to measure the dimension of the laser beam at the
sample location. The numerical aperture (NA) of the sample excitation setup branch is also
extracted.

A typical Raman spectrum from a GaSe thin sample is presented and analyzed to attribute
all Raman lines. Non-linear fits are performed to obtain the frequency, full width at half
maximum (FWHM), and intensity of all modes observed. Finally, spectral broadening phe-
nomena caused by the combination of the instrumentation finite NA and the dispersion of
PhPs is discussed.
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Figure 4.3 Left : AFM image of a 201 ± 2 nm thick GaSe flake. Right : extracted line profile.
Dashed lines are substrate and flake heights.

4.2.1 Optical setup

A diagram of the backscattering Raman setup built during this project is shown in Fig. 4.4.
The different signals traveling across the setup are depicted by green, blue, and red lines for
the path of the excitation laser, the sample image, and the Raman signal respectively.

The excitation laser is a Nd-YAG single mode laser emitting at 532 nm with a 1 MHz FWHM
linewidth. To remove laser sidebands, a band-pass filter with an optical density of 3.5 at ±
1 nm and up to 6 at ± 5 nm is used. An anti-reflection coated (R<0.5%) non-polarizing
beamsplitter with a transmission of 90% and a reflection of 10% redirects the excitation laser
toward the sample.

The excitation laser is focused to the sample by a microscope objective with a numerical
aperture of 0.55 and a transmission of 80%. The 1.9 mm laser beam diameter (see next
section for laser beam characterization) does not entirely fill the 5 mm entrance pupil of the
objective, and leads to an effective NA of only 0.21.

The sample is enclosed inside a cryostat and is placed under vacuum. Filled with liquid
nitrogen, the cryostat allows measurements at 77 K. The cryostat is fixed to a rotating stage
that allows a sample tilt of ± 40◦ for samples in air. This angle reduces to ± 25◦ when the
sealing glass of the cryostat is mounted.
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Figure 4.4 Raman backscattering experimental setup built. Green, blue and red lines indi-
cates the path of the excitation laser, the sample image, and the Raman signal, respectively.

The scattered Raman and Rayleigh signals are collected by the objective and transmitted
through the non-polarizing beamsplitter. Laser reflections and Rayleigh signals are filtered
by a long-pass edge filter at 532 nm, with a transition width of 120 cm−1, an edge steepness
of ∼ 35 cm−1, and transmission of 93% for wavelengths above 535 nm.

The Raman signal is focused onto the entrance slit of the spectrometer by a 3.5 cm focal
length achromatic doublet with a transmission of 98%. This focal length was chosen to
optimize the amount of light reaching the grating for a beam diameter of 5 mm, the diameter
of the objective pupil. The spectrometer is composed of 2 aspherical mirrors with a focal
length of 50 cm. It is equipped with a 1200 g/mm grating with maximum efficiency around
530 nm.

The spectra were measured using a charge coupled device (CCD) camera. Two cameras were
used along this work. The data gathered for the first study (see thickness dependent PhPs
energy section 5.1.2) used a EMCCD camera working at −80◦ with a quantum efficiency of
35% around 550 nm. The sensor is composed of 1600x400 pixels, each with a size of 16 by
16 µm. The resulting spectral resolution is 0.85 cm−1. The second is a cryogenically-cooled
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CCD camera operating at −120 ◦C. It provides a quantum efficiency of 90% around 550 nm.
The sensor is composed of 1340x400 pixels, each with a size of 20 by 20 µm. This larger pixel
size leads to a lower spectral resolution of 1.1 cm−1, but the significantly higher quantum
efficiency provides much better sensitivity.

White light from a fiber-coupled illuminator is injected into the optical path using a semi-
transparent mirror to image the sample and the laser excitation spot simultaneously. This
mirror is installed on a flip mount between the sample and the beamsplitter. Then, the image
of the sample is projected onto a color CCD camera using a 20 cm focal length achromatic
lens.

Finally, polarization-resolved Raman measurements were conducted to investigate the inten-
sity and frequency anisotropy of PhPs from rectangular GaSe samples. Although the laser
is nominally vertically polarized with a 1:100 ratio, a linear polarizer with a 1:1000 polariza-
tion ratio is used at the laser output to increase the polarization contrast. Ahalf-waveplate
mounted on a rotative motorized stage is added between the beamsplitter and the sample to
rotate the excitation laser polarization. It has a retardation of 0.53, a transmission of 97.5%
at 530 nm and an anti-reflection coating (R<0.5%). Upon rotating the waveplate from 0 to
90◦, a frequency deviation of 0.05 cm−1 is observed on the spectra, which is attributed to
the birefringence uncertainty onto the frequency variation. Finally, another linear polarizer
with a maximum transmission of 60% at 532 nm and an extinction ratio of 1:1000 is placed
between the beamsplitter and the spectrometer. It has the role of an analyzer and enables
to switch between parallel and crossed polarization configurations.

4.2.2 Excitation beam dimension

To characterize the dimension of the laser spot exciting the samples, a knife-edge test was
performed using a sharply cleaved Si substrate as a reflective media. This substrate was
glued to a non-reflective material.

The transverse profile of the laser spot can be approximated by a 1D-Gaussian profile

f(x) = 1
σ

√
2
e− (x−x0)2

2σ2 , (4.1)

where σ is proportional to the spot width d0 = 4σ, and x0 is the center position of the spot.
The width is defined at an intensity of 1/e2.

By scanning this beam across the Si edge, it travels from the reflective to the non reflective
medium. The reflected signal corresponds to the portion of the Gaussian profile over the
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reflective part. The intensity of this signal, considering a distance d between x0 and the Si
edge position, is the definite integral of the Gaussian profile

F (d) = 1
2(1 + erf(d− x0

σ
√

2
)), (4.2)

where erf(x) is the error function. The edge is arbitrary set to x0 = 0 µm.

The measured reflected laser intensity with respect to the edge position, with a translation
step size of 80 nm, is shown in Fig. 4.5. The inset shows a photography of the sample with
the white arrow depicting the translation direction of the Si substrate.

To calculate the beam width, the coefficient σ was extracted by fitting Eq. 4.2 to the data
(blue points). The fit is depicted by the red line on the figure. The extracted beam width is
d0 = 1.7 µm with less than 1% uncertainty.

In the paraxial approximation for Gaussian beam propagation, the beam radius is linked to
its divergence with θNA = 2λ/πd0. In this case, it corresponds to the maximum angle with
which the objective focus the excitation source. It is linked to the NA of the objective with
NA = n sin(θNA). Hence, θNA ∼ 12◦, and the effective NA of the objective for focusing the
excitation laser is 0.21.

The theoretical NA of the objective is 0.55, achieved if the 5 mm entrance pupil is fully
illuminated. As the ratio between the effective and the theoretical NA is ∼ 38%, we can
conclude that only 5 × 38% = 1.9 mm of the entrance pupil is illuminated. It corresponds
to the diameter of the collimated excitation laser.

4.2.3 Calibration

The CCD camera returns the intensity integrated over time and pixel area, for each of its
pixel. The raw data returned by the CCD is the intensity as a function of pixel position. In
order to convert these data into a spectrum, a calibration table must be established between
pixel positions and wavelengths.

Krypton and Neon calibration lamps with precisely known emission lines are used to get 9
points of calibration spanning the whole sensor. To take into account the non-linear rela-
tionship between wavelengths and diffraction angles of the grating, a quadratic regression is
performed. Finally, to convert wavelengths into relative wavenumbers (in cm−1), the trans-
formation 107 · [1/λlaser(nm) − 1/λ(nm)] is applied, where λlaser is the wavelength of the
excitation laser.

The non-linear regression provides a quadratic coefficient of approximately 10−6 nm. It leads
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Figure 4.5 Measurement of the beam width focused by an under illuminated 0.55 NA objec-
tive. The red line is a fit of Eq. 4.2 to the data, represented by blue circles. The extracted σ
parameter leads to a beam width of 4σ = 1.7 µm, at an intensity of 1/e2. The center position
of the edge x0 was arbitrary set to 0 µm.



62

to a correction of about −4 cm−1 for the last pixel of the sensor, compared to the simpler
but less accurate linear regression. A non-linear regression is therefore required.

When performing angular dispersion measurement, an oblique incidence can lead to a small
lateral shift, which is translated by the spectrometer into a wavenumber shift in the spectra.
To compensate, a correction must be added to the calibration table, as described next.

First, as the excitation laser position can slightly shift by ∼ 0.5 cm−1 over days, the spectra
at 0◦ incidence were recalibrated so the wavenumber of the excitation laser line is at 0 cm−1.
Then, fully symmetric A’1

1 and A’3
1 phonon frequencies from GaSe are used as a reference,

since they are isotropic and do not exhibit any angular dispersion. The spectra for oblique
incidences were then recalibrated using a linear regression so the frequency of these phonons
matches the frequency found at normal incidence.

4.2.4 Data processing

This section focuses on the processing of experimental Raman spectra to extract useful
spectral information about PhPs from GaSe. As an example, Fig. 4.6 displays a processed
Raman spectra for a sample of thickness 380 ± 2 nm at 300 K and a sample tilt angle of 10◦.
The solid red curve corresponds to the sum of all fitted functions used to model experimental
data, which are depicted by blue circles. Individual functions corresponding to phonons and
PhPs are depicted by solid colored lines. The discussion below describes the steps followed
for data processing and how spectral information were extracted.

Pre-processing

In GaSe, the spectral region of interest is between 120 and 350 cm−1. In this region, a
parabolic baseline is subtracted to remove a broad background composed of an intense GaSe
photoluminescence at 2700 cm−1 (in relative units), second order Si Raman modes and resid-
ual stray light.

Phonon lines

As shown in Sec. 3.3.1, only vibrational modes of symmetry A’1, E’ and E” are allowed in
Raman scattering from GaSe. Acoustic modes apart, it leads to potentially 18 visible spectral
lines in experiments. However, Davydov doublets and degenerate E’ and E” mode reduce
the number of potentially observable Raman lines to 6.

One E’ and one E” modes have a very low frequency that cannot be measured with the
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Figure 4.6 Raman spectra from a GaSe flake of thickness 380 ± 2 nm at 300 K, with a sample
tilt angle of 10◦. The spectra is composed of 3 phonons (A’1

1, E’(TO) and A’3
1) and 2

PhPs (Le1 and Sp(SiO2)). Blue circles display experimental data. Deep blue circles are data
considered for the regression. The dashed red line is the sum of all single fitted functions,
depicted by the different colored curves. Finally, vertical dashed lines indicate the tabulated
position of GaSe pure phonons.
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available Raman system. Moreover, the remaining E” is not allowed in the backward config-
uration. Because the remaining E’ is polar, the LO-TO degeneracy is split at the Brillouin
zone center. However, the E’(LO) mode is not allowed in the backscattering configuration.
As a result, 3 Raman lines from phonons are expected in GaSe Raman spectra. They are
labeled as A’1

1, E’(TO) and A’3
1.

These Raman lines are reported in the spectrum presented in Fig. 4.6. They are located at
a frequency of 133.2 for the A’1

1, 211.4 for the E’(TO) and 305.8 cm−1 for the A’3
1. These

correspond to tabulated frequencies with a deviation of at most 1% (see Table S1). The
phonon spectral intensity profiles are best modeled by a Lorentizan lineshape. As can be
seen in Fig. 4.6, this lineshape successfully captures the spectral information of experimental
data, especially the ones from the E’(TO) and the A’3

1. Typically, the uncertainty on the
extracted peaks position is approximately 0.05 cm−1.

A slight discrepancy between data and the fitted function appears at the base of the A’1
1.

In this region, the measured intensity is affected by the long-pass filter. Also, weak Raman
features around 120 cm−1 and 150 cm−1 are measured. They are attributed to GaSe oxidation
products [76]. Despite protecting the flakes from ambient air during Raman measurements,
the exfoliation is not performed in a controlled atmosphere, allowing some oxidation to occur
even on a short time scale. Although the Lorentzian profil does not correctly model the base
of the A’1

1 profile, its very high intensity allows for the analysis of its position, width and
amplitude with a similar accuracy as the other phonons.

Phonon-polariton lines

Inside the hyperbolic region of GaSe delimited by the E’(TO) and E’(LO) polar phonons, two
spectral features attributed to Le1 (longitudinal extraordinary) and Sp(SiO2) (surface) PhPs
modes are identified. The inset of Fig. 4.6 shows Raman spectra for sample tilt angles ranging
from 0◦ to 40◦. The orange curve is a guide for the eye of peak position. Dispersive behaviors
with an amplitude of 3.8 cm−1 for the Le1 and 4.9 cm−1 for the Sp(SiO2) are observed over
this angular range. As demonstrated in Ref. [24], any observed angular dispersion of more
than 0.9 cm−1 at a sample tilt of 45◦ cannot be attributed to angular dispersion of polar
phonons.

The linewidth of the Le1 is well resolved by the instrumentation, so a Lorentzian lineshape
is used to model this linewidth. For the sample studied in Fig. 4.6, it is measured at a
frequency of 246.12 ± 0.08 cm−1 at normal incidence, and 249.95 ± 0.02 cm−1 for a sample
tilt of 40◦. As can be seen on the inset, the FWHM decreases with increasing sample tilt,
going from 4.7 to 3.5 cm−1. Indeed, the slope of the dispersion curve decreases for higher
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incidence angles, resulting in a lower angular broadening of PhPs. This effect will be further
discussed in the next section. Finally, the intensity of this mode increases by a factor of 3.7
between normal and 40◦ incidence. This is explained by the Raman tensor of the Le mode,
described by Eq. 3.48.

A weaker additional Le line was sometimes measured at a higher frequency. Its intensity was
vanishing at oblique incidence angles. This line has been attributed to a PhP mode thanks
to a resonant excitation near the 1s GaSe exciton [24]. It will not be further discussed in this
work.

As already introduced in the modeling section of PhPs, two surface modes can propagate,
one at each interface. They lie between E’(TO) and A”

2(LO) phonons. This region contains
a type-II hyperbolic band between E’(TO) and A”

2(TO), and a double Reststrahlen band
between A”

2(TO) and A”
2(LO). Here, only one surface mode is measured in the spectrum.

In Fig. 4.6, the mode at the GaSe/substrate interface appears at a frequency of 236.0 ±
0.2 cm−1 at normal incidence and 240.9 ± 0.4 cm−1 at 40◦. Since the substrate is composed
of Si with a thin SiO2 layer, this mode is labeled Sp(SiO2). It is more dispersive than the
Le1. As a consequence, angular broadening leads to broader spectral lines, and the FWHM
can be as large as 14 cm−1 for some samples. Due to this angular broadening, the lineshape
is not expected to remain Lorentzian. However, for most spectra, a Lorentzian lineshape
captures successfully the lineshape of the Sp(SiO2). For a few samples, a Gaussian lineshape
proved to be more appropriate.

Contrary to the Le1, the intensity of the Sp(SiO2) decreases with increasing sample tilt,
as can be seen on the inset of the figure. It loses approximately half of its intensity when
comparing normal and 40◦ incidence. The Sp(SiO2) is described by a combination of Te
and Le Raman tensors. As Te tensor components decrease with sample tilt (see Eq. 3.48),
we can suppose this surface mode to have a dominant Te component. Finally, a quick drop
of signal can also be observed when the mode is close to the A”

2(LO) frequency, forbidden
in Raman. Despite reducing the quality of the lineshape modeling, the uncertainty on the
Sp(SiO2) frequency always remains below 1 cm−1.

4.2.5 Angular Broadening

As presented in the previous section, the frequency region between A”
2(LO) and E’(LO)

phonons contains many guided Le modes. Their frequency decreases with increasing mode
order. In this work, only the fundamental mode Le1 is observed experimentally. As the Le
modes are separated by few wavenumbers, the instrumental resolution of ∼ 1 cm−1 and the
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FWHM of the Sp(SiO2) (∼ 10 cm−1) and the Le1 (∼ 4 cm−1) prevents their observation.

The PhP linewidth can be interpreted by virtue of the non zero angular acceptance of the
instrumentation, that broaden PhP spectral lines. This angular broadening is attributed to
the finite NA of the microscope objective combined with the wide Raman excitation and
Raman collection beams at the sample location.

The angular broadening is quantified by the maximum angle made by the rays of these beams
with the optical axis, in the objective focal plane. This angle, defined as θNA, is linked to the
NA = n sin(θNA) of the objective. At first approximation, this angle is the same for both the
sample excitation and the signal collection. The calculated effective NA of 0.21 from Sec.
4.2.1 leads to an estimation of θNA,excit = θNA,col = 7◦ for these two contributions.

Angular broadening from Raman signal collection

As PhPs can scatter photons in all directions, the objective collects all the Raman scattered
signal within the NA of the objective. The collected Raman signal is attributed to PhPs
with propagation angles in the range θ ± θNA,col, with θ the sample tilt angle and θNA,col the
collection angle. As one propagation angle is related to one frequency in the PhP dispersion
relation, probing many propagation angles at once leads to the measurement of PhPs with
different frequencies. Hence, a large collection angle induces broadening of PhP spectral
lines.

This broadening is accounted for in the computed PhP dispersion using the model described
in Sec. 3.4.2. The calculated broaden Raman spectra matching the experimental data is
computed by summing simulated unbroaden Raman spectra for all collected angles, weighted
according to a Gaussian distribution centered at the tilt angle θ (fixed) and having a standard
deviation of σ = θNA,col/

√
2 ln(2). The angle best modeling experimental data is θNA,col =

5◦ [24].

Fig. 4.7 shows an example of superimposed experimental and computed PhP Raman scat-
tering dispersion from a 650 nm thick sample. Experimental PhP spectral line positions are
depicted by white circles. The background is the computed PhP dispersion without angular
broadening effects, with bright color corresponding to the Raman intensity. Grey dashed
horizontal lines indicate pure phonon frequencies. The green dashed horizontal line located
at a frequency of 241.6 cm−1 is the permittivity confinement criterion for the Sp(SiO2) [24].
This will be further discussed in the next chapter.

The green region depicts the tilt angle range probed at normal incidence due to angular
broadening. Since the dispersion is strong in this region, a large amount of frequencies
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Figure 4.7 Calculated Raman spectra of PhP dispersion for a 650 nm sample, without angular
broadening. The computed background corresponds to the Raman intensity depending on the
sample tilt angle on a logarithmic scale of S=10. White circles are data points of experimental
PhP Raman line positions. The attributed uncertainty is lower than the point size. The green
region corresponds to the probed PhP propagation angles due to angular broadening at 0◦

incidence, while the blue region is the probed region for sample tilt of 25◦. Adapted with
permission from Ref. [24] © 2020 Alaric Bergeron.
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contribute to the collected Raman spectrum. It leads to a large broadening of PhP lines and
frequencies higher than what is expected from the tilt angle alone. The blue region shows
the probed angle range for a sample tilt of 25◦, where the dispersion is much weaker. In this
second case, the measurement more faithfully reports the PhP frequency and the effect of
angular broadening is minimized.

Angular broadening from Raman excitation

Angular broadening originating from the Raman excitation also limits the spectral resolution.
At a sample tilt θ, each incident ray between θ−7◦ and θ+7◦ also contributes to the scattering
of PhPs in any direction. These scattered PhPs subsequently induce angular broadening from
Raman signal collection. As a result, every incident ray contributes to the broadening of the
PhP Raman lines. This contribution is however harder to account for in the simulations.
Combined with angular broadening from the signal collection, the required computational
time is too important as it is around 10 h for one incidence angle.

Angular broadening is therefore a key experimental aspect of PhP Raman measurements.
Due to the finite NA of the microscope objective at the sample location, both the excitation
and the collection Raman beams induce angular broadening of the PhP Raman lines. This
broadening originates from the dispersion of PhPs, and is more important at low sample tilts.
This therefore lowers the resolution of PhP Raman lines, alters their measured frequency,
and limits the ability to resolve all PhP modes. The angular dispersion can be minimized
using low NA objectives and k-imaging techniques.
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CHAPTER 5 RESULTS

The propagation properties of PhPs are encoded in the dispersion relation, which links the
frequency ω of a PhP to its wavevector q. In hyperbolic materials the dispersion is hyperbolic
and PhPs with high momentum can propagate. As demonstrated in Sec. 3.3, these PhPs
are experimentally accessible using Raman scattering in the backward configuration. In this
configuration, PhPs with in-plane wavevectors in the range of 0 to 2×105 cm−1 can be probed.
Therefore, the dispersion of PhPs from thin GaSe crystal can be measured experimentally.

The crystal dimension highly influences the dispersion of PhPs. The first result of this work
presents the dependence of the PhP dispersion on the thickness of the GaSe sample. Then,
the frequency of the Le1 and the Sp(SiO2) PhP modes are compared with calculated Raman
spectra as a function of the GaSe thickness.

Finally, polarization-resolved Raman measurements are performed to probe lateral confine-
ment of PhPs in rectangular GaSe samples. As the polarization angle is varied, the measured
frequency of the PhP shifts. It is observed that the maximum frequency shift occurs along
the short and long sample axes.

5.1 Raman measurement of phonon-polaritons dispersion

In thin GaSe crystals, PhP modes are vertically confined which influences their dispersion.
In this section, the influence of the GaSe crystal thickness on the PhP dispersion is studied.
First, experimental data of PhP angular dispersion as a function of the crystal thickness
are presented. Then, the measured Le1 and Sp(SiO2) mode frequencies are compared with
calculated PhP Raman spectra.

5.1.1 Thickness dependent phonon-polaritons dispersion

Vertically confined PhPs have higher wavevectors than PhPs propagating in bulk crystals,
so much so that their dispersion can be probed using Raman scattering in the backward
geometry. This technique was used in order to investigate changes in the PhP dispersion
from GaSe crystal of different thicknesses.

The angular dispersion of PhPs measured by Raman backscattering is presented in Fig.
5.1, considering GaSe samples of thickness ranging from 201 nm to 12 µm. They have lat-
eral dimensions between 10 µm and more than 100 µm to lower the risk of unwanted lateral
confinement effects, even though it is negligible compared to vertical confinement effects.
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Due to geometrical constraints, the maximum sample tilt angle usually ranges between 25◦

and 45◦. The sample tilt angles, shown on the top axis, are converted to in-plane wavevectors
q∥ by using Eq. 3.54. Displayed on the bottom axis, this scale is more convenient to discuss
the dispersion of PhPs. The modes measured at normal incidence (θ =0◦) are consequently
associated to a zero in-plane wavevector, at which no PhP mode should be measured. An-
gular broadening from Raman signal collection includes PhPs measured at ± 5◦ around the
sample tilt angle. At normal incidence, PhPs with an in-plane wavevectors of up to 2 × 104

cm−1 are therefore probed. This value constitutes the in-plane wavevector resolution of the
instrumentation at normal incidence.

In total, three PhP branches are observed. They are displayed in blue, green and yellow for
the Sp(SiO2), Sp(air) and Le1 mode, respectively. In the reported dispersion curves, the color
gradient gives a visual reference of the GaSe crystal thickness, where darker colors indicates
thicker samples. Finally, the A”

2(TO), A”
2(LO) and E’(LO) polar phonon frequencies are

indicated on the right axis.

Thickness-dependent dispersion of the Le1 mode

As introduced in the previous chapters, the Le1 PhP mode is located in a type-II hyperbolic
region of GaSe, between the A”

2(LO) and E’(LO) polar phonon frequencies. These respec-
tively defines the lower and the upper frequency limits of the mode. At lower wavevectors,
the Le1 extrapolates to the dispersion of light in air, down to the A”

2(LO) frequency. At
higher wavevectors, this mode extrapolates to the frequency of the E’(LO) phonon. As can
be seen in Fig. 5.1, the expected Le1 mode dispersion is measured.

An increase in the measured dispersion slope with decreasing sample thickness is observed.
This can be explained by the vertical confinement of PhPs, which flattens their dispersion
curves and reduces the effects of angular broadening. The in-plane wavevector of extraordi-
nary PhPs can be written using Eq. 3.31 as

q∥ =
√
ϵ∥
ω2

c2 −
ϵ∥

ϵ⊥
q2

⊥, (5.1)

where q∥ and q⊥ are the in-plane and out-of-plane PhP wavevector components. In the
case of a Le1 mode, these components are real. The out-of-plane wavevector is given by
q⊥ = π/d, with d the thickness of the GaSe slab. In the type-II hyperbolic region, ϵ⊥ < 0
and ϵ∥ > 0. Then, at a fixed frequency, the in-plane wavevector q∥ increases when the
thickness d decreases. A reduction of the slab thickness therefore shifts the mode toward
higher wavevectors and flattens the Le1 dispersion curve.
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Figure 5.1 PhP dispersions from GaSe samples of different thicknessess. The different colors
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Le1 in yellow. The yellow and the blue circles are data points used to evaluate the PhP
confinement factor in the text. Darker colors correspond to thicker samples in the color
gradient. Pure phonon frequencies are indicated on the right. The horizontal dashed line is
the permittivity confinement criterion for the Sp(SiO2).
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In thicker crystals, the Le1 mode dispersion is very steep. It extrapolates to its upper limit
frequency at a lower wavevector than the in-plane wavevector resolution imposed by angular
broadening effects. The whole dispersion is then contained in the Raman spectra, so the
extracted PhP frequency is an average over many polariton states. The measured PhP
frequency is therefore close to the upper frequency limit for any sample tilt angle. That leads
to a very flat measured Le1 mode dispersion, as observed in Fig. 5.1 for the 12 µm thick
sample.

By reducing the crystal thickness, the dispersion of the Le1 PhP flattens and extrapolates to
its upper limit frequency at a much higher wavevector. As a result, fewer PhP frequencies
are measured within the acceptance angle, and the extracted frequency resolution increases.
As a result, in thinner samples, the measured Le1 frequency at normal incidence decreases
down to the A”

2(LO) frequency. The measured frequency increases to the upper frequency
limit for higher tilt angles. This results in a higher measured dispersion slope. This can be
observed in Fig. 5.1 by comparing the measured Le1 dispersion from samples of different
thicknesses. Moreover, the measured in-plane wavevector increases at a fixed frequency as
the sample thickness decreases.

The data point from the 380 nm sample depicted by a yellow circle is located at a frequency
of 240.9 ± 0.4 cm−1 and an in-plane wavevector of q∥ = 15×104 cm−1. This PhP is measured
between the two frequency limits of the Le1 mode, which ensures a high photon-phonon
mixed nature. With a vacuum wavevector of k0 = 1.5 × 103 cm−1, the confinement factor
η = q∥/k0 is between 89 and 110. The large range of values originates from the uncertainty
on the in-plane wavevector induced by the angular broadening. This estimation of the PhP
confinement factor is higher than the ones reported in MoO3 or hBN. A confinement factor
of 60 was indeed measured in a MoO3 crystal of thickness 55 nm [44]. In a hBN monolayer, in
which the PhP vertical confinement is maximized, a confinement factor of 60 was measured
by Dai S. et. al. [41]. This demonstrates that PhPs from GaSe are interesting because they
get more easily vertically confined.

The Le1 mode from the same sample is measured at a frequency of 246.1 ± 0.1 cm−1 at
normal incidence, very close to the lower limit frequency. Angular broadening effects are
minimized, and the measured dispersion is expected to match the theoretical Le1 dispersion.
The PhP group velocity can then be extracted and a value of 0.014c is estimated. This value
is approximately 10 times higher than the ones reported in other materials supporting PhPs,
revealing that the Le1 PhP from GaSe is less dispersive.
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Thickness-dependent dispersion of surface modes

The Sp(air) is located between the E’(TO) and the A”
2(LO) phonon frequencies. Its field is

located at the air/GaSe interface. Like the Le1, the Sp(air) extrapolates to the dispersion
of light in air at lower wavevectors. At higher wavevectors, it extrapolates to the A”

2(LO)
frequency. Its propagation properties are either the ones of light guided in air or the ones
of a pure phonon mode, so this PhP mode has a very low photon-phonon mixed nature.
Similarly to what is reported in Fig. 5.1, the dispersion of this mode is flat. The dispersion
from the 12 µm thick sample should not be associated with a negative group velocity. This
results from a gain of frequency resolution from increasing the sample tilt angle, which
decreases the FWHM of every PhP Raman line. The Sp(air) is seldomly observed because
of the width of the Le1, which can extend up to the A”

2(LO) frequency. Moreover, surface
irregularities induced by the exfoliation process of GaSe samples can promote losses and
inhibit the propagation of the Sp(air).

Like the Sp(air), the Sp(SiO2) is located between the E’(TO) and A”
2(LO) phonon frequen-

cies. The Sp(SiO2) has field components at the GaSe/SiO2/Si interface, which can extend to
the air/GaSe interface. At a fixed wavevector, the Sp(SiO2) has a lower frequency than the
Sp(air) because of the higher permittivity of SiO2 and Si. The dispersion of the Sp(SiO2)
extrapolates to the dispersion of light in Si at lower wavevectors, reaching the E’(TO) fre-
quency. This polariton follows the permittivity confinement criterion depicted in Fig. 5.1 by
a gray dashed horizontal line located at a frequency of 241.6 cm−1, and this mode extrap-
olates to this frequency at higher wavevectors. Similarly to the two PhP modes presented
above, the expected dispersion is measured for the Sp(SiO2).

The combination of dispersion curve flattening with decreasing the sample thickness and an-
gular broadening also explains the variation of the measured dispersion slope of the Sp(SiO2).
Here, the dispersion flattening arises from the coupling between the two surface modes. This
coupling takes a slightly different form for a symmetric and an asymmetric waveguide.

A symmetric waveguide is considered first. Fig. 5.2 displays the Ex electric field of the two
surface modes in two different GaSe waveguides at a frequency of 240 cm−1. The first has a
thickness of 80 µm a-b) and the second has a thickness of 5 µm c-d). For a slab thick enough,
the evanescent fields of the surface modes do not overlap and the two modes are degenerate.
When reducing the thickness of the GaSe slab, the evanescent field of the surface mode
eventually couple and the degeneracy is lifted. The two modes can be decomposed into an
even (Sp1) and an odd (Sp2) mode because of the mirror symmetry defined by the x−y plane
at the center of the waveguide. The field distributions of the Sp1 and the Sp2 are depicted
by Fig. 5.2 c) and d), for a slab thickness of 5 µm. Due to a node in the distribution of the



74

Air

a) b)

Air
qx = 1.7 x 103 cm-1 qx = 1.7 x 103 cm-1

GaSe
x

y

z

c) d)

qx = 1.9 x 103 cm-1 qx = 1.6 x 103 cm-1

Sp1 Sp2

80

60

40

20

0

-20

-40

-60

-80

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

80

60

40

20

0

-20

-40

-60

-80

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Ex1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Ex

μm

Figure 5.2 Surface PhP field maps from two GaSe waveguides suspended in air. The frequency
of the PhP is 240 cm−1. qx is its calculated in-plane wavevector. The thicknesses of the slabs
are a-b) 80 µm and c-d) 5 µm. In a) and b), the two surface modes are degenerate. The
degeneracy is lifted in the thinner GaSe slab and c) depicts the symmetric Sp1 mode while
d) shows the anti-symmetric Sp2 mode.
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Sp2 electric field, this mode has a lower wavevector (q∥,Sp2 = 1.6 × 103 cm−1) than the Sp1

((q∥,Sp1 = 1.9 × 103 cm−1).

To better visualize the splitting between the surface modes, Fig.5.3 shows the evolution of
the modes dispersion with the thickness of the GaSe slab. When reducing the thickness of
the waveguide from 80 to 5 µm, two distinct dispersion branches arise because of the mode
fields coupling, as depicted in Fig. 5.3 a) and b). Reducing the slab thickness increases
the frequency splitting even more, as shown in Fig.5.3 c) for a thickness of 500 nm. The
dispersion of the lower branch (Sp1) flattens as this mode shifts toward higher wavevectors.
Inversely, the upper branch (Sp2) has a stronger dispersion and saturates quickly to the
A”

2(LO) phonon frequency.

In an asymmetric waveguide (GaSe slab deposed on a SiO2/Si substrate), the two surface
modes are not degenerate because of the different permittivities at the two waveguide inter-
faces. The electric field of the two surface mode nevertheless couples when they overlap, but
the two modes cannot be effectively expressed in an even and odd basis due to the broken
reflection symmetry of the waveguide. Despite the less effective coupling, the frequency of
the surface modes split and this splitting increases by decreasing the GaSe crystal thickness.
This is shown in Fig. 5.4, where the Raman dispersion curves of PhPs is computed for a
GaSe thickness of 650, 380 and 201 nm. In this calculation, the angular broadening is ig-
nored. The permittivity damping rate is set to Γ∥ = Γ⊥ =1.8 cm−1 instead of 0.5 cm−1 to
better reproduce the PhP Raman lines broadening induced by the phonon lifetimes [24]. As
can be seen, the dispersion curve of the Sp(SiO2) flattens by decreasing the crystal thickness
d. The Sp(air) is difficult to discern because it is located near the A”

2(LO) frequency, very
close to the Le1.

Thereafter, the angular broadening acts in the same way as described for Le1 and the mea-
sured dispersion slope of the Sp(SiO2) increases with decreasing the sample thickness. Be-
cause the Sp(SiO2) spans a larger frequency range than the Le1, the change in its measured
dispersion is more pronounced.

For the 201 nm sample, the data point located at a wavevector of q∥ = 10 × 104 cm−1

and depicted by the blue circle in Fig. 5.1 can be used to evaluate the PhP confinement
factor. Its frequency of 235.0 ± 0.5 cm−1 is far from the Sp(SiO2) frequency limits. With the
corresponding vacuum wavevector of k0 = 1.5 × 103 cm−1, the resulting confinement factor η
is between 54 and 79. These values are in the range of the ones reported in MoO3 and hBN.
Coupled to its high sensitivity to its dielectric environment, the Sp(SiO2) is also of great
interest for the development of polaritronic devices.
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5.1.2 Thickness dependent Raman spectra

The model presented in Sec. 3.4.2 enables the computation of PhP Raman spectra. It was
used by Bergeron to compute PhP Raman spectra as a function of the GaSe crystal thickness
[24]. In order to demonstrate the ability of this model to reproduce and explain experimental
data, the calculated spectra are compared with the measured PhP mode frequencies from
GaSe samples of various thicknesses.

The results are presented in Fig. 5.5, for a sample tilt angle of 0◦. The background corre-
sponds to the calculated Raman intensity presented on a logarithmic scale and with a scaling
factor of S = 10. The effect of the angular broadening, as presented in Sec. 4.2.5, is included.
In total, 17 samples with thickness ranging from 30 to 750 nm were measured (14 in this work
and 3 from the work led by Bergeron in Ref. [24]). The dashed horizontal gray lines are the
positions of the pure phonon frequencies1. As can be seen, only the Le1 and the Sp(SiO2)
are identified in the simulated Raman spectra. The measured mode frequencies are depicted
by blue squares and yellow circles, respectively.

The energy of the Le1 is weakly affected by the variation of the thickness, as only a broadening
of its Raman line is observed for sample thicknesses above 500 nm. There is a good agreement
between the computed spectra and the reported Le1 frequencies. Two Le modes are reported
for the 750 nm whose frequencies match the broaden computed spectra.

In the experimental data, it proved difficult to identify the Le1 mode for samples under
200 nm thick. To explain this, the x-axis intensity polarization of the PhP field is shown
in Fig. 5.6 for crystal thicknesses of 2500, 1500, 500 and 200 nm. The considered in-plane
wavevector is q∥ = 6 × 103 cm−1, that corresponds to a sample tilt angle close to 0◦ in
experiments. The permittivity damping rate is set to Γ∥ = Γ⊥ =1.8 cm−1 [24]. As can be
seen, the frequency of the Le1 decreases between sample thickness of 2500 and 500 nm, and
gets closer to the A”

2(LO) frequency. For a sample thickness of 500 nm and below, the Le1

field is indistinguishable from the Sp(air). The field intensity of both the Le1 and the Sp(air)
diminishes, and so does their Raman intensity.

As opposed to the Le1, the frequency of the Sp(SiO2) is highly influenced by the thickness
of the GaSe crystal as shown in Fig. 5.5. For crystal thinner than 400 nm, the central
frequency of the computed spectra decreases close to the E’(TO) frequency. The spectra are
also broader, especially between sample thicknesses of 100 and 400 nm.

There is also a good agreement between the computed Raman spectra and the measured

1This calculation was made by Bergeron during a former work [24]. The considered GaSe phonons
frequencies were slightly different from this actual work.
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Sp(SiO2) frequencies. The maximum measured frequency is 236.0 ± 0.3 cm−1 and is reported
for the sample of thickness 380 nm. The minimum frequency reported is 217.9 ± 0.2 cm−1 for
a sample thickness of 30 nm. This corresponds to a frequency variation of 18.1 ± 0.4 cm−1

(2.24 meV). Moreover, the frequency varies linearly with the sample thickness with a linear
coefficient of ∼ 0.06 cm−1/nm between thicknesses of 84 and 380 nm. Finally, the measured
frequencies between thicknesses of 30 and 84 nm appears like plateau whereas the Sp(SiO2)
frequency should keep decreasing as shown by the computed spectra. This discrepancy could
not be explained at the moment. The surface roughness of GaSe flakes could have higher
impacts when the thickness gets close to the Si thermal oxide thickness (100 nm).

The data reported in this section are of great importance in the experimental characterization
of PhPs propagating in thin GaSe crystals and in the validation of the available computational
models. It is shown that along with its vertical confinement, the sensitivity of the Sp(SiO2) to
its dielectric environment can be used to engineer its dispersion, which could be exploited to
probe surface impurities or to engineer planar refractive optics by modulating the dielectric
properties of the substrate [20, 46, 79]. The high confinement factor measured for the Le1

and the Sp(SiO2) could also improve the interaction strength with electric dipoles [15,48,80].
The variation of the PhP mode frequencies with the GaSe sample thickness could be used
to estimate the crystal thickness. The Sp(SiO2) could be used to probe the crystal thickness
between 100 and 380 nm, while the Le1 could be used between 380 nm and 12 µm.

5.2 Polarization resolved Raman scattering of laterally confined phonon-polaritons

The previous section demonstrated that Raman scattering in the backward geometry can be
used to probe the PhP dispersion in GaSe thin crystals. It also showed that PhPs can be
vertically confined by reducing the sample thickness.

This section demonstrates the possibility of probing laterally confined PhPs in thin GaSe
crystals with polarization-resolved Raman spectroscopy. First, polarization-resolved mea-
surements on bulk Si and GaSe are presented to establish the experimental setup polarization
control and sensitivity. Then, experimental results of polarization-resolved measurement from
rectangular samples are presented. The observed PhP polarization anisotropy is attributed
to lateral confinement.

5.2.1 Mathematical resources for the data processing

In the following sections, the experimental results will be discussed quantitatively with the
help of two mathematical tools. The first is the autocorrelation function. It is utilized to



81

identify a periodic signal in the presence of noise. The autocorrelation is the correlation
between a data set and itself with a delay τ . It is defined as

ρ(τ) =
∫ 2π

0 P (ψ)P ∗(ψ − τ)dψ∫ 2π
0 |P (ψ)|2dψ

. (5.2)

Here, P (ψ) corresponds to either the intensity or the frequency of a Raman line at a polar-
ization angle ψ. The autocorrelation has positive values and

∫ 2π
0 |P (ψ)|2dψ is a normalization

term. The autocorrelation is 360◦ periodic with ρ(0◦) = ρ(360◦) = 1.

In this work, P (ψ) is either isotropic, 180◦-periodic or 90◦-periodic, with a possible mixture
of these three behaviors. As a result, the autocorrelation is symmetric with respect to τ =
180◦. For a perfectly correlated signal, ρ(0◦) = ρ(180◦) = 1 independently of the periodicity
mentioned above. In the presence of uncorrelated noise, ρ(0) − ρ(180◦) = γfreq,int can be
different from 0. γfreq,int quantifies the correlation that has been lost for a delay of 180◦.
The subscripts freq and int denote the loss of correlation of a frequency or an intensity
polarization scan. For a polarization scan only made of uncorrelated noise and centered
around zero, ρ(0) = 1 and ρ(τ ̸= 0) = 0, which gives a correlation loss of γfreq,int = 100%.
When correlation is added to P (ψ), from either a uniform variation or a periodic signal,
γfreq,int < 100%. γfreq,int is a normalized quantity that can be compared between the different
measurements.

The autocorrelation reveals the periodicity of the input data set, which helps probe polariza-
tion anisotropy in P (ψ). An asymmetry in P (ψ) can also be detected if the periodicity of the
autocorrelation deviates from the expected ones. Moreover, the amplitude of the oscillations
can be used to measure the polarization contrast. This contrast is defined as the ratio of the
maximum and the minimum value of P (ψ).

The second mathematical tool is a general parametric function that will be fitted to the
polarization response P (ψ). This will enable the characterization of the anisotropy presents
in the angle-resolved polarization scans. This function writes as

Pmod(ψ) = C0 + C1 sin(α1 − ψ)2 + C2 sin(α1 − 2ψ)2, (5.3)

where C0, C1, C2 and α1 are fit parameters. C0, C1 and C2 define the amplitudes of a
contribution from an isotropic, anisotropic with a 180◦ periodicity and anisotropic with a 90◦

polarization response, respectively. These coefficients have values between 0 and 1 and are
always normalized such as C0 + C1 + C2 = 1. Finally, α1 is a phase term. In experiments,
these coefficients are discussed in order to characterize the PhP polarization response.
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5.2.2 Polarization resolved Raman scattering from Silicon

The mathematical tools presented above are applied to the case of Si in order to test the
polarization-resolved measurement system. Si has a diamond-like crystal structure with two
atoms per unit cell. It belongs to the O7

h space-group and has one Raman-active phonon
mode at the center of the Brillouin zone [81]. It is located at a frequency of 519 cm−1. Its
scattering efficiency is relatively high and presents a strong polarization intensity anisotropy.

Intensity polarization anisotropy

Due to the Si cubic crystal structure, the Si phonon mode is three-time degenerate at the
center of the Brillouin zone. It has a T2g symmetry and its Raman tensors are [81]

↔
RT2g (x) =


0 0 0
0 0 e

0 e 0

 , ↔
RT2g (y) =


0 0 e

0 0 0
e 0 0

 , ↔
RT2g (z) =


0 e 0
e 0 0
0 0 0

 , (5.4)

where x, y, z denote for the propagation direction and e is a constant. A half-waveplate
is placed on the optical path of both the excitation and scattered signals to rotate their
polarization. This rotation is expressed by the following matrix

Jψ =


− cos(ψ) sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 0

 . (5.5)

The angle ψ corresponds to half of the angle between the waveplate fast axis and the incoming
light polarization. The Raman intensity as a function of the polarization angle ψ therefore
writes

ISi(ψ) ∝
∑

i=1,2,3
|es · JTψ ·

↔
RT2g (i) · Jψ · ei|2. (5.6)

In the parallel (subscript ∥, es = ei
T = (1, 0, 0)) or the crossed (subscript ⊥, ei

T = (1, 0, 0) ;
es = (0, 1, 0)) polarization configuration, this expression simplifies to

ISi(ψ)∥,⊥ ∝ | sin
(
α∥,⊥ − 2ψ

)
|2. (5.7)
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α∥,⊥ denote for the angle made between the polarizer and the analyzer in the parallel (α∥ =
0◦) or in the crossed (α∥ = 90◦) configuration. With Eq. 5.3, Eq. 5.7 is retrieved by setting
C0 = C1 = 0 and C2 = 1, with |α1,⊥ − α1,∥| = 90◦.

A polarization-resolved Raman intensity scan from a [100] cleaved Si sample is presented in
Fig. 5.7. It is measured at normal incidence (θ = 0◦) and ambient temperature. Green and
red diamonds are data points from the parallel and crossed configuration. The intensities
are normalized by the maximum value extracted from the parallel configuration. During the
experiment, the angle step was 1◦, but it is increased to 5◦ in the diagram for clarity.

Eq. 5.3 is fitted to the data and the resulting curves are depicted by the solid lines. As can
be seen, the four-fold symmetry is retrieved and there is a good agreement with the mea-
sured intensities. For the parallel configuration, the extracted parameters are C0,∥ = 0.035,
C1,∥ = 0.030, C2,∥ = 0.935, and α1,∥ =42.5◦. As expected, the coefficients associated with an
isotropic (C0) and a 180◦-periodic anisotropic (C1) response are close to zero. In contrast,
the coefficient associated with a 90◦ periodicity (C2) is close to one. The phase coefficient
α1,∥ is compared below with the one extracted from the crossed polarization response. In
the crossed configuration, the extracted coefficients from the fit of Eq. 5.3 give C0,⊥ = 02,
C1,⊥ = 0.027, C2,⊥ = 0.973, and α1,⊥ =136.4◦. Again, the C0 and C1 coefficients are close to
zero while the C2 dominates. These values define the references of a perfectly symmetric four-
lobed polarization response. The phase offset between the two configurations is |α∥ − α⊥| =
94◦. This corresponds to an error of approximately 4% with the theoretical value of 90◦ and
shows good experimental control of the excitation and scattered polarizations.

In Fig. 5.7, an intensity factor of 2.5 between the parallel and the crossed intensity amplitudes
is observed. The Raman intensity from the crossed polarization was always lower than that
of the parallel configuration because of the lower signal reaching the camera sensor. Finally,
a contrast ratio of 33:1 and 284:1 between the higher and the lower measured intensities of
the parallel and crossed configurations are extracted, respectively. The significant difference
between these two ratios is explained by the half-waveplate retardation value of 0.53, different
from the theoretical value of 0.50. This deviation decreases the intensity contrast of the scan
made in the parallel configuration. The intensity contrast is nevertheless very satisfying and
demonstrates the high sensitivity of the polarization-resolved Raman instrumentation.

2Any fit parameter with a value below 0.001 is considered as 0.
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Figure 5.7 Polarization-resolved Raman intensity from a [100] cleaved Si sample at normal
incidence and ambient temperature. The intensity is normalized by the higher value reported
in the parallel configuration. The green and red diamonds correspond to the parallel and the
crossed configuration, respectively. The solid lines are a fit of Eq. 5.3 to the data.



85

Frequency polarization anisotropy

In the same way as for the vertical confinement of PhPs, the lateral confinement of PhPs can
be probed by measuring frequency shifts. The sensitivity of the polarization instrumentation
to the Raman lines frequency variations is evaluated with the Si phonon mode. The frequency
of this phonon is not expected to change and therefore has an isotropic polarization response.
The Si substrate lateral dimension is large enough (many centimeters) to prevent any spatial
confinement effects.

The frequencies are extracted from the intensity scan from Fig. 5.7. The resulting polar-
ization diagram is shown in Fig. 5.8, with the solid green and red lines corresponding to
the parallel and crossed configurations. The radial coordinate indicates the frequency de-
viation from the smallest reported value. This metric is very sensitive to noise, but it is
nonetheless suitable to display the frequency variation of multiple Raman lines and identify
periodic patterns. Some data points were removed from the diagram to avoid irrelevant
phonon frequencies extracted from regions where the Raman intensity is close to zero.

As shown in Fig. 5.8, the evolution of the frequency offset is isotropic with a few variations.
The polarization angles associated with a higher frequency offset are regions with a weak
Raman intensity. The associated uncertainty is therefore much higher (± 0.6 cm−1) than
that extracted from a sufficient Raman intensity (± 0.02 cm−1). The standard variation
extracted from the frequency variation, excluding the outlier data points, is 0.02 cm−1 for
the two configurations. This defines the lowest variation of frequency measurable by the
instrumentation.

The fit of Eq. 5.3 is not displayed in the figure for clarity. The extracted C0 coefficients for
the parallel and crossed configurations are 0.812 and 0.922 respectively, revealing an isotropic
polarization response. The difference between the coefficients of the two configurations is
due to outliers. The value of the other parameters are C1,∥ = 0.138, C2,∥ = 0.050 and
C1,⊥ = 0.078, C2,⊥ = 0. As a result, any C1 and C2 values lower than 0.138 and 0.050
demonstrate a dominant isotropic frequency response.

Correlation of the measured polarization response

Fig. 5.9 displays the autocorrelation of the intensity and frequency shift of the Si polarization
response presented above. As the results are similar for the two polarization configurations,
only the parallel configuration is presented. The data points are depicted by diamonds, each
connected by a solid line. The data points are displayed every 4◦ for clarity.

The red curve represents the autocorrelation on the normalized Raman intensity from Fig.
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Figure 5.8 Phonon frequency polarization anisotropy from a [100] cleaved Si sample, at normal
incidence and ambient temperature. The solid green and red lines denote for the parallel and
the crossed configurations. The radial coordinate corresponds to the distance from the lower
reported frequency for each configuration. To avoid irrelevant frequencies associated a very
low Raman intensity, some data points have been removed.
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Figure 5.9 Autocorrelation of the intensity and frequency Si polarization response from the
parallel configuration data set of Fig. 5.7 and 5.8. The angle step was 1◦ in the experiment,
but the data points are displayed every 4◦ for clarity.

5.7. The autocorrelation has a periodicity of 90◦ which reproduces the four-lobed polarization
anisotropy of the Si phonon mode. However, the oscillation amplitude is not 1 because of
the polarization lobes finite width, leading to a non-zero autocorrelation for delays of 45 and
135◦. As a result, the observed amplitude is 0.58.

A very low loss of correlation of γint = 0.12% is extracted. This illustrates the small contri-
bution of uncorrelated noise within the Raman intensity and demonstrates that the observed
oscillations primarily originate from the crystal scattering properties. Moreover, the dif-
ference between the autocorrelation at delays of 180 and 90◦ quantifies the presence of a
180◦-periodic pattern in the polarization response. In the case of Raman intensity from bulk
samples, this is attributed to the residual birefringence within the polarization instrumenta-
tion. Here, ρ(180◦) − ρ(90◦) = 0.001 and depicts a very low amount of birefringence.

The green curve presents the autocorrelation calculated on the frequency offsets from Fig. 5.8.
For this calculation, all the data point including outliers were kept. It drops rapidly after an
angle delay of 2◦ to a constant value of 0.95. These demonstrate that the observed fluctuations
are highly uncorrelated and that the frequency variation is uniform. The frequency shift
spikes with a periodicity of 90◦ observed in Fig. 5.8 at polarization angles of 70◦, 160◦, 250◦

and 340◦ are not found in the autocorrelation. This reveals the robustness of this tool to
identify periodic signal in the presence of noise. The loss of correlation on the frequency
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offset is γfreq = 5% and demonstrates that the correlation, mainly attributed to the isotropic
response, is well conserved even for high delays.

5.2.3 Polarization-resolved Raman scattering from bulk GaSe

In wide GaSe crystals, the polarization-resolved Raman response of phonons and PhPs is
expected to be isotropic due to the in-plane crystal symmetry. Any observed asymmetry can
then be attributed to the imperfection of the polarization instrumentation. Again, only the
results for the parallel configuration are presented.

Intensity polarization anisotropy

Fig. 5.10 presents the polarization-resolved Raman intensity from a GaSe sample with a
lateral dimension of a few millimeters and a thickness of 12 µm. The measurement was
performed under normal incidence and at ambient temperature. The normalized Raman
intensity of the A’31 and E’(TO) phonons is depicted in red and green while the Le1 polariton
intensity is depicted in blue. The solid curves correspond to the fits of Eq. 5.3 to the data.

The intensity of the two phonons decreases by 10% when the polarization angle deviates by ±
90◦ from their maximum intensity. This results in a low 180◦ symmetry in the intensity profile
with a 90◦ phase shift between the two phonon scans. The two A’31 lobes are aligned along
the 0◦-180◦ axis, while the E’(TO) are aligned along the 90◦-270◦ axis. The response from
these two phonons should be perfectly isotropic. The observed discrepancies are explained
by the retardation of the imperfect half-waveplate (0.53 instead of 0.5). Finally, the intensity
of the Le1 fluctuates by 20%, but the polarization response is still mainly isotropic.

The extracted coefficients illustrate the dominant isotropic response of the polarization scan
as C0 values of 0.913, 0.918 and 0.892 are extracted for the A’31, E’(TO) and Le1 modes,
respectively. The lower Le1 parameter depicts a less isotropic response. It is attributed to
higher intensity uncertainty due to the lower polariton scattering efficiency. For the two
phonons, the C1,2 parameters are lower by one order of magnitudes compared to the C0

coefficient and are then negligible. For the Le1 polariton, C1 and C2 are 0.048 and 0.070.
For the intensity polarization response, higher C1 and C2 values will be used to confirm the
presence of periodic modulations of 180◦ and 90◦.

The autocorrelation calculated on the data of Fig. 5.10 is presented in Fig. 5.11. As can be
seen, the autocorrelation value is close to 1 for the two phonon modes and the Le1 polariton.
The scale was adapted in order to better capture the very small variations.

The autocorrelation retrieves the two-fold symmetric polarization response observed in Fig.
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Figure 5.10 Polarization-resolved Raman intensity from a GaSe sample with a lateral di-
mension of a few millimeters and a thickness of 12 µm, in the parallel configuration. The
measurement was made at normal incidence and ambient temperature. Raman intensity
from the E’(TO) and the A”3

1 phonons is depicted in green and red, while the Le1 polariton
is depicted in blue. Each curve is normalized by the maximum intensity of the associated
mode. Diamonds, connected by dashed line, correspond to experimental data. The solid
curves correspond to fits of Eq. 5.3 to the data.
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Figure 5.11 Autocorrelation of the polarization-resolved Raman intensity from the GaSe
sample presented in Fig. 5.10. The green and red curves show the autocorrelation of the
E’(TO) and A”3

1 phonons, while the autocorrelation of the Le1 polariton is shown in blue.

5.10 for both phonons. The lower oscillation amplitude of the E’(TO) mode compared to
A’3

1 denotes a slight difference in the contribution of the birefringence in the intensity mea-
surement because of the phonons different frequencies. Values ρ(180◦) − ρ(90◦) of 2 × 10−3

and 1.7 × 10−3 are extracted from the autocorrelation. The birefringence contribution to the
intensity modulation is therefore very similar to the one from the Si phonon. It demonstrates
that this birefringence comes from the instrumentation. Finally, a loss of correlation of γint <
0.02% for the two phonon modes is extracted. This is significantly lower than that for the Si
phonon. This can be explained by the much longer integration time used for measurements
on GaSe. This helps mitigate the fluctuation of the scattered Raman intensity over time.

The autocorrelation of the Le1 presents a rapid drop at low delay attributed to higher un-
correlated variations than the phonons. Indeed, a higher correlation loss of γint = 0.23%
is extracted. The intensity uncertainty of this mode is higher than for phonons because of
its lower Raman intensity in the spectra. In addition, an unexpected 90◦-periodic pattern
is observed. The origin of this pattern is unknown. It is however important to note that
its amplitude is very small (0.001). This testifies to the sensitivity of the autocorrelation to
periodic signals. As such, this value will be used next as a minimum threshold for which a po-
larization anisotropy in intensity polarization scans can be associated to lateral confinement
effects.
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Frequency polarization anisotropy

The polarization instrumentation involves the rotation of birefringent optics, that may impact
the measured frequencies by affecting the beam path. Because the amplitude of the frequency
polarization anisotropy from confined PhPs is small (∼ 1 cm−1), it is important to characterize
the uncertainty in the measurement of frequencies.

Fig. 5.12 shows the frequency offset associated to the polarization-resolved intensity data
presented in Fig. 5.10. As depicted in Fig. 5.12 a), the phonon frequency exhibits low ampli-
tude variations as a function of the polarization angles. These variations present a standard
deviation of 0.03 cm−1, comparable to the value extracted from Si. This suggests that the
frequency variation from GaSe phonons is primarily attributed to the limited resolution of
the polarization instrumentation.

The frequency offset of the Le1 polariton is displayed in Fig. 5.12 b). Its frequency variation
is higher than the phonons, with a standard deviation of 0.13 cm−1. The fit of Eq. 5.3 leads
to coefficient C0, C1 and C2 of 0.553, 0.368 and 0.079. Although the polarization response is
mainly isotropic, there is a non-negligible contribution of a 180◦ periodic modulation. This
anisotropy is not observed in the phonon frequency polarization response and indicates that
the instrumentation does not induce this effect. Polaritons are very sensitive to their dieletric
environment [31]. It is plausible that sample inhomogeneities induce a residual anisotropy.
Fortunately, this anisotropy is much weaker than the one induced by lateral confinement, as
presented in the next section.

The autocorrelations of the frequency offset are presented in Fig. 5.13. The autocorrelation
of the A’3

1 displays a linear evolution. The origin of this evolution remains unknown. It is
ignored next because the frequency of the A’3

1 does not affect the Le1 polariton in the spectra.
As expected, the autocorrelation of the E’(TO) and Le1 modes decreases to a constant value
within a low angle delay of 5◦. A loss of correlation γfreq of 23 and 12% are extracted for the
E’(TO) phonon and the Le1 polariton, respectively. The autocorrelation of the Le1 displays
a weak 180◦ periodicity with an amplitude of 0.05. This value defines the minimum threshold
at which a polarization anisotropy (either two or four-fold symmetric) is detected in GaSe
frequency scans.

The polarization instrumentation successfully retrieves the expected isotropic polarization
response from a large GaSe. This uniform response is explained by the large size of the
sample compared to the propagation length of phonons and PhPs. As a result, there is no
lateral confinement and the in-plane symmetry of the crystal is preserved.

In the two last sections, the polarization instrumentation was evaluated with the help of the
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Figure 5.12 Polarization-resolved Raman frequency from a GaSe sample with a lateral di-
mension of few millimeters and a thickness of 12 µm. The measurements was made at normal
incidence and ambient temperature, in the parallel configuration. a) the green and the red
solid curves correspond to the Raman frequency from the E’(TO) and the A”3

1 phonons,
while b) the blue solid curve corresponds to the Le1 polariton. These frequencies are ex-
tracted from the intensity scan presented in Fig. 5.10.
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Figure 5.13 Autocorrelation of the frequency offset extracted of the polarization response
presented Fig. 5.12. The green and red curves show the autocorrelation of the E’(TO) and
A”3

1 phonons, while the autocorrelation of the Le1 polariton is shown in blue.
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parametric function Eq. 5.3 and the autocorrelation calculated on the polarization scans.
Some metrics were extracted in order to characterize the polarization response of rectangular
GaSe samples. These metrics are always used in addition to directly comparing the phonons
and the polaritons polarization response. First, a C0 coefficient higher than 0.9 illustrates
an isotropic polarization response. For lower values, the C1 and C2 coefficients along with
the autocorrelation are used to discriminate between a 180◦ or a 90◦ periodic polarization
response. For intensity polarization scans, periodic oscillations of the autocorrelation with an
amplitude greater than 0.001 reveal the presence of a periodicity. A value ρ(180◦) − ρ(90◦)
lower than 0.005 indicates that the 180◦ periodic modulation of an intensity scan can be
attributed to the residual birefringence induced by the instrumentation. In a frequency
polarization scan, periodicity is detected by an autocorrelation oscillation amplitude greater
than 0.05. The ρ(180◦) − ρ(90◦) value is used to quantify the 180◦ periodic modulation owed
to the different lateral sizes of the sample. Finally, the frequency or intensity correlation
loss γfreq,int is discussed case by case since it is closely related to the average value of the
polarization scan.

5.2.4 Polarization-resolved Raman scattering from thin rectangular GaSe sam-
ples

In rectangular samples, the propagation of PhPs along the sample short and long axes is not
equivalent as the in-plane crystal symmetry is broken. In hBN and MoO3, PhP propagation
lengths of ≈ 20 µm have been reported [31, 34]. For samples of similar dimensions, the PhP
undergo lateral confinement effects that result in a frequency shift. Along the diagonal of
the sample axes, the distance the PhP must travel to reach each sample boundary is greater.
Therefore, lateral confinement effects are minimized along the diagonals of a rectangular
sample.

These lateral confinement effects are probed with polarization-resolved Raman scattering by
gradually rotating the excitation polarization angle from the sample short to the long axis. In
a rectangular sample, the presence of lateral confinement should lead to a PhP polarization
response with a 90◦ periodic pattern. Moreover, the PhP density of states is also redefined
by the new boundary conditions. Therefore, a similar polarization anisotropy as for PhP
frequencies is expected in intensity polarization scans.

The amount of data is limited and the lateral confinement of PhP could not be extensively
characterized similarly to vertical confinement. In total, the polarization response of 12
rectangular samples was probed in this work. From them, 8 presented evidence of lateral
confinement effects. The 4 samples set aside had a scattering efficiency too low to perform a
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satisfactory polarization scan.

This section presents experimental evidence of laterally confined PhP. The polarization re-
sponse of 3 samples is exploited with the help of the metrics discussed in the two previous
sections. The polarization-dependent Raman measurements were conducted at normal inci-
dence (θ = 0◦) and a temperature of 77 K. This lower temperature increases the signal-to-
noise ratio and reduces the risk of sample damage caused by the long exposure needed to
record a complete polarization scan.

First sample: intensity polarization response

The first sample presented has a thickness of 200 ± 3 nm and lateral dimensions of 8.4x25 µm.
The intensity polarization response is presented in Fig. 5.14. An optical image of the sample
position during the experiment is displayed in the panel b). The turquoise and yellow colors
denote the short and long sample axes. Fig. 5.14 a) illustrates the normalized Raman
intensity as a function of the polarization angle of the A’3

1 and E’(TO) phonons and the
Sp(SiO2) and Le1 polaritons. These intensities are individually normalized by their maximum
value. Diamonds correspond to data points and the solid curve is a fit of Eq. 5.3 to the data
of the Sp(SiO2) and Le1 polaritons. Finally, the autocorrelation of the intensity polarization
diagram is shown in Fig. 5.14 c).

The fit of Eq. 5.3 to the A’3
1 phonon leads to coefficient values of C0 = 0.848, C1 = 0.140 and

C2 = 0.012. The C0 coefficient is lower while the C1 is higher than those from the wide GaSe
crystal, which denotes a slightly more important two-lobed polarization response. This small
anisotropy can still be attributed to the instrument residual birefringence since the two-lobed
pattern is similarly aligned along the 0◦-180◦ axis. This stronger two-fold periodic pattern
is also supported by the value ρ(180◦) − ρ(90◦) of 0.005, 2.5 times higher than for the wide
crystal. Finally, the loss of autocorrelation remains low since γint = 0.11%. Concerning the
E’(TO) phonon, the extracted coefficients C0 = 0.932, C1 = 0.035 and C2 = 0.033 illustrate
an isotropic polarization response. The C0 coefficient is higher than that extracted from the
intensity polarization response from the wide GaSe sample, which illustrates a very uniform
response. The loss of correlation of γint = 0.05% is also comparable to that from the wide
sample. Given the scale at which the autocorrelation is presented, the E’(TO) autocorrelation
is considered uniform. Despite the small loss of isotropy of the A’3

1, the polarization response
of the two phonons is comparable to that from a wide GaSe sample. As expected, reducing
the sample dimension does not affect the phonon polarization responses.

As can be seen in Fig. 5.14 a), the polarization response of the Sp(SiO2) polariton is mainly
uniform. The extracted coefficients from the fit of Eq. 5.3 are C0 = 0.874, C1 = 0.074 and
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Figure 5.14 Intensity polarization response of the sample of thickness 200 ± 3 nm and lateral
dimensions of 8.4x25 µm. a) each intensity scans are individually normalized. Diamonds
correspond to the experimental data while the solid curves shows a fit of Eq. 5.3 to the data
of the Sp(SiO2) and the Le1. The cyan and yellow solid lines depicts the orientation of the
sample short and long axis. These lines are also displayed in b), superimposed on an optical
image of the sample. This images shows the position of the sample during experiments. The
autocorrelation of the intensity polarization response shown in a) is displayed in c).
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Figure 5.15 Frequency polarization response of the sample of thickness 200 ± 3 nm and lateral
dimensions of 8.4x25 µm. The frequencies are assimilated to the intensities of the polarization
scan of Fig. 5.14. The frequency offset with respect to the lower reported frequency is shown
in a), as a function of the polarization angle. The inset zooms onto lower frequency offsets.
Diamonds correspond to the experimental data while the solid curves illustrate a fit of Eq.
5.3 to the data of the Sp(SiO2). The cyan and yellow solid lines depicts the orientation of the
sample short and long axis (see Fig. 5.14 b)). The autocorrelation of the polariton frequency
offsets is shown in c).
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C2 = 0.051. The C0 coefficient is slightly below 0.9, which reveals the presence of a weak
anisotropy. The C1 coefficient is similar to that of the phonons from the wide GaSe sample
and indicates the presence of a weak 180◦ periodic modulation pattern. This is supported
by the autocorrelation shown in Fig. 5.14 a) with ρ(180◦) − ρ(90◦) = 0.001, despite the
asymmetry depicted by the deviation of 40◦ of the autocorrelation minimum from its expected
localization at 90◦. The loss of correlation of γint =0.16% is similar to that from the Le1

polariton of the wide crystal. The intensity polarization response of the Sp(SiO2) is therefore
uniform with a weak 180◦ periodic pattern owing to the residual birefringence. The intensity
scan of the Sp(SiO2) does not reveal the presence of lateral confinement as it is similar to
that of phonons.

The polarization response of the Le1 intensity shows a faint four-lobed pattern. The extracted
coefficients from Eq. 5.3 are C0 = 0.883, C1 = 0.035 and C2 = 0.083. This weak four-lobed
polarization response is revealed by the small increase of the C2 coefficient by 0.013 compared
to that of the Le1 polariton from the wide GaSe sample. The autocorrelation depicted in Fig.
5.14 c) oscillates with an approximately 80◦ periodicity and an amplitude of 0.002. However,
the polarization lobes are neither aligned with the sample axes nor a diagonal of the sample
axes. In addition, the irregular periodicity of the autocorrelation indicates that the lobes are
mostly asymmetric. There is consequently not enough evidence of polarization anisotropy in
the intensity scan that could be attributed to lateral confinement for the Le1 polariton.

First sample: frequency polarization response

The frequency polarization response from the same sample is presented in Fig. 5.15. The
frequencies originate from the polarization presented in Fig. 5.14. Fig. 5.15 a) illustrates
the frequency offset as a function of the polarization angle of the A’3

1 and E’(TO) phonons
and the Sp(SiO2) and Le1 polaritons. The inset zooms onto lower frequency offsets depicted
by the dashed gray circle. The solid curve is a fit of Eq. 5.3 to the data of the Sp(SiO2)
polariton. The turquoise and yellow colors denote the short and long sample axes as shown
in the sample image in Fig. 5.14 b).

Because they have the same polarization response characteristics, the two phonons and the
Le1 polariton are discussed simultaneously. As can be seen in the inset of Fig. 5.15 a), their
frequency offset is much lower than that of the Sp(SiO2) (0.4 cm−1 at most). Eq. 5.3 could
not be fitted because the polarization response is very asymmetric and cannot be satisfyingly
resolved by the function. Only the autocorrelation on the frequency offsets depicted in Fig.
5.15 b) is utilized.

For the A’3
1 phonon and the Le1 PhP, the autocorrelation is very similar and decreases to
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a constant value within 70◦ angle delay. This denotes a small correlation in the frequency
variation for low-angle delays, followed by a uniform variation for higher delays. The autocor-
relation loss is 28% and 21% respectively, close to that from the frequency autocorrelation of
the wide GaSe sample. The autocorrelation of the E’(TO) also decreases up to a delay of 50◦.
The autocorrelation for higher angle delays does not reveal a well defined symmetry. The
value ρ(180◦) − ρ(90◦) of 0.06 is slightly higher than that of the Le1 frequency autocorrela-
tion from the wide sample. Although this illustrates a weak contribution of a 180◦ symmetric
pattern, the correlation loss of γfreq = 24% is similar to that extracted from uncorrelated
frequency variations in the wide sample. Therefore, the evolution of the E’(TO) frequency is
assimilated to random frequency variations. As a result, the frequency polarization response
of these three modes reveals no significant polarization anisotropy, and there is no indication
of spatial confinement for the Le1 polariton.

As depicted by Fig. 5.15 a), the Sp(SiO2) PhP displays a strong anisotropy with a dominant
90◦ periodicity and a maximum frequency offset of 1.2 cm−1. In addition, the polarization
lobes precisely align with the sample short and long axis, to within 1◦. The minimum
frequency shifts are aligned with the sample diagonals, as expected. The parameters extracted
from the fit of Eq. 5.3 to the Sp(SiO2) polariton are C0 = 0.016, C1 = 0.256 and C2 = 0.728.
The C2 coefficient is 1 order of magnitude higher than the C0 and nearly 3 times higher
than the C1, which illustrates the dominant four-fold symmetry pattern. The value of C1 is
close to that extracted from the frequency polarization scan of the wide GaSe crystal for the
Le1 polariton, which reveals a non-negligible modulation by a 180◦ periodic pattern. These
modulations are however not along the same axis (see Fig. 5.12 b) for comparison) and
demonstrates that this modulation does not originate from the polarization instrumentation.

The Sp(SiO2) autocorrelation is presented in Fig. 5.15 c) and displays a clear 90◦ periodicity
with a correlation amplitude of 0.35. This amplitude is one order of magnitude larger than
the residual oscillation observed in the polariton frequency autocorrelation from the large
GaSe crystal (see Fig. 5.13). The difference ρ(180◦) − ρ(90◦) = 0.035 is larger than that of
the intensity response from Si, which illustrates the more pronounced 180◦ periodic pattern
observed here. A frequency difference of 0.3 cm−1 is indeed extracted between the short and
long sample axes. Finally, a correlation loss of γfreq = 6.2% is extracted, much lower than the
correlation loss from the polariton frequency offset of the large GaSe crystal. The frequency
polarization response of the Sp(SiO2) reveals polarization anisotropy that was not present in
the large GaSe sample. Hence, this polariton experiences lateral confinement effects along
the sample axes.
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First sample: conclusion

The intensity polarization response does not reveal the presence of lateral confinement for the
two PhP modes. However, the frequency polarization response of the Sp(SiO2) polariton is
anisotropic with a 90◦ periodic pattern, and the measured frequency shift is three times larger
than that of the two phonons. This anisotropy is illustrated by a dominant C2 coefficient
value over C0 and C1, a 90◦ periodicity in the autocorrelation with an amplitude of 0.35, and
a low loss of correlation of 6.2% within 180◦ angle delays. Moreover, the maximum frequency
shifts of the Sp(SiO2) are measured along the sample axes, while the minimum frequency
shifts are found along the sample diagonals. Therefore, we can conclude that the polarization
anisotropy observed for the Sp(SiO2) PhP arises from the reduction of the sample dimension
close to the propagation length of this polariton. As a result, the propagation length can
be estimated as the length of the sample long axis, leading to a PhP propagation length of
25 µm.

In this work, the estimated PhP propagation lengths do not originate from a direct measure-
ment extracted by fitting an exponential decay to a propagating PhP field. The extracted
values in this work therefore only provide a first approximation. If confirmed, the PhP prop-
agation length in this sample is comparable to the ones reported in hBN and MoO3 (see
Table 2.1), which demonstrates interesting polariton guiding properties in GaSe.

Second sample: intensity polarization response

The second sample presented in this work has a thickness of 284 ± 3 nm and a lateral
dimension of 19x50 µm. Similarly to Fig. 5.14, Fig. 5.16 presents the normalized intensity
polarization response of A’3

1 the E’(TO) phonons and the Sp(SiO2) and Le1 polaritons.
The panel b) presents an optical image of the sample. The limited field of view of the
direct imaging instrumentation of the Raman setup prevents the complete observation of the
sample during the setting of the experiment. The sample dimension are characterized using
an optical microscope afterward. The autocorrelation on the intensity polarization scan is
presented in panel c).

The A’3
1 and E’(TO) intensity polarization responses are similar to that from the first sample.

The extracted coefficients from Eq. 5.3 are respectively C0 = 0.856, C1 =, 0.114 C2 = 0 and
C0 = 0.882, C1 = 0.118, C2 = 0. These coefficients are close to the one extracted from
the A’3

1 intensity scan of the first sample. The autocorrelation also resembles that of the
first sample and that from the wide GaSe crystal. The 180◦ symmetric pattern owing to the
residual birefringence is indeed retrieved by the ρ(180◦) − ρ(90◦) value of 0.002 and 0.004,
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Figure 5.16 Intensity polarization response of the sample of thickness 284 ± 3 nm and lateral
dimensions of 19x50 µm. a) each intensity scans are individually normalized. Diamonds
correspond to the experimental data while the yellow and the blue solid curves illustrate a
fit of Eq. 5.3 to the Sp(SiO2) and the Le1 data. The cyan and yellow solid lines depicts
the orientation of the sample short and long axis. These lines are also displayed in b),
superimposed on an optical image of the sample. This images shows the position of the
sample during experiments. The autocorrelation of the intensity polarization response is
displayed in c).
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Figure 5.17 Frequency polarization response of the sample of thickness 284 ± 3 nm and lateral
dimensions of 19x50 µm. The frequencies are assimilated to the intensities of the polarization
scan of Fig. 5.16. The frequency offset with respect to the lower reported frequency is shown
in a), as a function of the polarization angle. The inset zooms onto lower frequency offsets.
Diamonds correspond to the experimental data while the yellow solid curve shows the fit of
Eq. 5.3 to the Sp(SiO2) data. The cyan and yellow solid lines depicts the orientation of the
sample short and long axis (see Fig. 5.16 b)). The autocorrelation of the polariton frequency
offsets is shown in c).
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similar to that from the first sample. Finally, the loss of correlation γint of 0.15% and 0.14%
is also very close to what is already reported for the A’3

1 and E’(TO) polarization response
in this work. The usual uniform intensity polarization response with a little modulation
attributed to the residual birefringence is measured for the two phonons.

Compared to the first sample, the intensity polarization response of the polaritons presents a
noticeable 90◦ periodic pattern, as shown in Fig. 5.16 b). For the Sp(SiO2), the polarization
lobes are misaligned with respect to the sample axis by an angle of 28◦. Depending on the
position of the excitation laser on the sample, the curved sides of the sample may influence
the orientation of the polarization lobes and deviate their orientation. This can be verified
by repeating the measurement at different sample locations. The extracted fit parameters for
this polariton are C0 = 0.820, C1 = 0.070 and C2 = 0.110. The C0 coefficient is lower than the
Le1 from the first sample, denoting a lesser uniform polarization response. The higher C1 and
C2 coefficients with C1 < C2 illustrate a more anisotropic polarization response dominated
by a four-fold periodic pattern. The autocorrelation depicted in Fig. 5.16 c) reveals this
two-fold symmetric modulation with ρ(180◦) − ρ(90◦) = 0.002. This value is the same as the
one extracted from the intensity autocorrelation of phonons, so this modulation is attributed
to the residual birefringence of the instrumentation. The presence of a four-lobed symmetry
is supported by the very symmetric 90◦ periodicity of the autocorrelation. The amplitude of
this periodicity is 0.003, three times higher than that of the wide GaSe crystal Le1 intensity
autocorrelation. Moreover, there is a lower correlation loss γint of 0.18%. The intensity scan
anisotropy of the Sp(SiO2) can be attributed to the lower lateral dimensions of the sample.

The polarization lobes of the Le1 PhP align better with the sample axes than the ones from
the Sp(SiO2) as a lower deviation of 15◦ is observed. The fit of Eq. 5.3 to the Le1 leads
to fit coefficients of C0 = 0.774, C1 = 0.045 and C2 = 0.181. The higher C2 coefficient
than that of the Sp(SiO2) illustrates an even more pronounced four-fold symmetry pattern.
The intensity autocorrelation reveals this stronger anisotropy as the 90◦ periodic oscillations
have an amplitude of 0.01, which is one order of magnitude higher than the polariton from
the wide crystal. The residual instrumentation birefringence is again retrieved by the value
ρ(180◦) − ρ(90◦) = of 0.001. Despite the slightly higher correlation loss γint of 0.35%, the
perfect 90◦ periodicity, the well defined oscillation pattern of the autocorrelation and the
great oscillation amplitude confirm the presence of a four-fold periodic anisotropy in the Le1

intensity polarization response. This anisotropy is stronger than that of the Sp(SiO2) of the
same sample and also reveals lateral confinement effects.
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Second sample: frequency polarization response

The frequency offsets associated with the intensity polarization response presented in Fig.
5.16 are shown in Fig. 5.17. The polarization diagram displaying the A’3

1 and E’(TO)
phonons and the Sp(SiO2) and Le1 PhPs frequency offsets is shown in Fig. 5.17 a). The
inset zooms onto lower frequency shifts. The autocorrelation calculated on the frequency
offsets is depicted in Fig. 5.17 b).

The frequency polarization response of the A’3
1 and E’(TO) phonons presents an unexpected

120◦ periodic pattern. Their maximum frequency shift is 0.3 cm−1, lower than that of the two
polaritons. This periodicity cannot be resolved by Eq. 5.3. The autocorrelation reproduces
this periodicity, with a little deviation of 5◦ with the position of the maximum expected
at a delay of 120◦. The oscillation amplitude of 0.2 is one order of magnitude higher than
that of the residual oscillation of the Le1 frequency autocorrelation of the wide GaSe crystal.
Finally, the total correlation loss cannot be estimated at 180◦ because no autocorrelation
maximum is expected at this delay for a three-fold periodic pattern. The evolution of the
frequency offset is nevertheless regular and illustrates a correlated signal. The origin of this
anisotropy cannot be explained by either the rectangular shape of the sample or the polar-
ization instrumentation that can only induce a two or four-fold symmetric pattern. Because
this is the only polarization measurement revealing such an anisotropy for the phonons and
the observed frequency shift is lower than that of the polariton, this unexpected anisotropy
will be set aside.

As shown in Fig. 5.17 a) the Sp(SiO2) presents a strong four-lobed pattern with a periodicity
of 90◦. The maximum frequency shift observed is 0.8 cm−1. The frequency polarization lobes
are aligned with the lobes from the intensity scan with a deviation of 15◦. Moreover, the
frequency polarization lobes deviate from 13◦ to the sample axes. By fitting Eq. 5.3 to
the Sp(SiO2) polarization response, parameters of C0 = 0.038, C1 = 0.058 and C2 = 0.904
are extracted. Here, the C2 coefficient is higher than C0 and C1 by at least one order of
magnitude. This illustrates the strong four-lobed polarization response with no modulation
by a two-lobed pattern. C2 is also close to the one from the four-lobed response of the Si
phonon, which illustrates the quality of the measured four-lobed frequency anisotropy.

The autocorrelation of the Sp(SiO2) frequency offsets is shown in Fig. 5.17 c). It displays
a clear 90◦ periodicity with oscillation amplitudes of 0.5. This amplitude is one order of
magnitude larger than the oscillation of the frequency autocorrelation of the wide GaSe
crystal. A total loss of correlation of γfreq =3.1% is extracted and shows a more correlated
signal than the ones of the previous sample. The value ρ(180◦)−ρ(90◦) of 0.025 is lower than
of the Sp(SiO2) of the first sample, which supports the absence of a two-lobed symmetry
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modulation. The presence of lateral confinement effects is well established for this Sp(SiO2)
polariton.

The polarization lobes of the Le1 are quite asymmetric as depicted by Fig. 5.17 a). Indeed,
the upper and left polarization lobes are separated by 110◦ instead of 90◦. The intensity
and frequency polarization lobes are almost aligned with a deviation of 20◦. The Le1 has
a lower frequency offset amplitude (0.5 cm−1) than the Sp(SiO2), except for the lobe at
350◦ (0.8 cm−1). The asymmetry of the polarization response prevents Eq. 5.3 from being
satisfyingly fitted as it hardly reproduces the experimental data.

The Le1 autocorrelation is shown in Fig. 5.17 c). A total loss of correlation of γfreq =19%
is observed, close to the loss observed in the Le1 from the previous sample for which no
lateral confinement was observed. Here however, the autocorrelation depicts a periodicity.
The second autocorrelation maximum is located at an angle of 95◦ instead of 90◦ which is
a consequence of the polarization response asymmetry. The amplitude of the oscillations
is approximately 0.1, two times larger than the residual autocorrelation oscillations of the
polariton frequency from the large GaSe sample. The oscillations decrease over time delays
depicting a gradual correlation loss. The evolution of the frequency is therefore correlated
within a certain time delay and still suggests the presence of lateral confinement effects.

The different polarization response of the two polaritons implies that lateral confinement
effects might affect PhPs modes slightly differently. Fig. 5.17 a) depicts the 10◦ deviation
between the Le1 and Sp(SiO2) polarization lobe orientation around polarization angles of
340◦. As shown in the optical image in Fig. 5.16 b), the sample has a slightly irregular
and curved shape. Because surface and guided PhP propagates in different regions of the
sample, they can experience lateral confinement effects differently. Here, the asymmetry of
the Le1 polarization response reproduces the curved lateral shape of the sample, whereas
the Sp(SiO2) still has a very symmetric response. The polariton polarization response seems
sensitive to the sample inhomogeneities.

Second sample: conclusion

In this sample, an intriguing three-fold symmetric frequency polarization response is observed
for the two phonons. This symmetry cannot be explained by either the residual birefringence
or the rectangular shape of the sample. Moreover, this polarization response is not observed
for the polariton. There is no explanation yet for this polarization response, which is set
aside because the phonon frequency shifts are 3 times lower than the polaritons.

Concerning the polaritons, both the intensity and the frequency polarization response of the
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Sp(SiO2) and Le1 polaritons reveal the presence of a 90◦ periodic pattern. Moreover, the
intensity and frequency polarization lobes are satisfyingly aligned, demonstrating the same
origin of the observed anisotropy. The presence of lateral confinement is therefore established
and a PhP propagation length of 50 µm can be estimated in this sample. If confirmed by a
direct measureement, this value is higher than the ones reported in hBN and MoO3.

Third sample: Intensity polarization response

The third and last sample has much larger dimensions with a thickness of 820 ± 1 nm and
lateral dimensions of 88x328 µm. The intensity polarization response is presented in Fig.
5.18 in the same fashion as in Fig. 5.14 and Fig. 5.16.

The intensity polarization scan presented in Fig. 5.18 a) of the A’3
1 and E’(TO) phonons is

very similar to that of the first and the second samples. The regression of Eq. 5.3 to these
intensities leads to fit coefficients of C0 = 0.921, C1 = 0.079, C2 = 0 and C0 = 0.883, C1 =
0.103, C2 = 0.014, respectively. Moreover, the value of ρ(180◦) − ρ(90◦) is 0.002 and 0.004.
The intensity polarization response of the two phonons is again isotropic with a weak 180◦

periodic pattern modulation due to the instruments residual birefringence.

The measured two polariton intensities decrease as a function of the polarization angle as
shown in Fig. 5.18 a). This behavior was sometimes observed during a polarization scan, but
its origin remains unknown. It is plausible that the sample degrades over time, reducing the
scattering efficiency of the polaritons. However, it does not affect the measured frequency
since the intensity remains sufficient. The autocorrelation depicted in 5.18 c) reproduces this
linear evolution. The surface mode autocorrelation decreases monotonically to a correlation
loss of 2.1%, much higher than the usually observed correlation loss of intensity polarization
scan. This is a consequence of the linear evolution of the intensity scan. The autocorrelation
of the Le1 reveals a 90◦ periodicity with an amplitude en 0.004 within its linear decreasing.
This is higher than the second sample oscillation amplitude observed in the Sp(SiO2) intensity
autocorrelation. Despite the strong linear variation here, the Le1 intensity autocorrelation
retrieves a periodic signal even in the presence of a strong perturbation. The correlation loss
of 0.89% is also higher than usually observed for the intensity scans and is similarly caused
by the linear variation of the polarization scan. It can be concluded that the intensity scan
of the Sp(SiO2) is isotropic. In contrast, the Le1 intensity comprises a weak 90◦ periodic
anisotropy owing to lateral confinement effects.
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Figure 5.18 Intensity polarization response of the sample of thickness 820 ± 1 nm and lateral
dimensions of 88x328 µm. a) each intensity scans are individually normalized. Diamonds
correspond to the experimental data. The cyan and yellow solid lines depicts the orientation
of the sample short and long axis. These lines are also displayed in b), superimposed on an
optical image of the sample. This images shows the position of the sample during experiments.
The autocorrelation of the intensity polarization response is shown in c).
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Figure 5.19 Frequency polarization response of the sample of thickness 820 ± 1 nm and lateral
dimensions of 88x328 µm. The frequencies are assimilated to the intensities of the polarization
scan of Fig. 5.18. The frequency offset with respect to the lower reported frequency is shown
in a), as a function of the polarization angle. Diamonds correspond to the experimental data
while the solid blue curve shows the fit of Eq. 5.3 to the Le1 polariton data. The cyan and
yellow solid lines depicts the orientation of the sample short and long axis (see Fig. 5.18 b)).
The autocorrelation of the frequency offsets is shown in b).
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Third sample: Frequency polarization response

Fig. 5.19 shows the frequency offset associated to the intensity polarization scans from Fig.
5.18. This figure is presented in the same fashion as Fig. 5.15 and Fig. 5.17.

The inset of Fig. 5.19 a) zooms onto lower frequency offsets to better visualize the evolution
of the two phonons. A second unusual polarization scan is observed as the frequency offset
remains close to 0 cm−1 up to a polarization angle of 90◦, and then increases rapidly up
to 0.2 cm−1 with a pattern that could be assimilated to a 180◦ periodic response. The
autocorrelation shown in Fig. 5.19 c) displays a linear decrease with no modulation by a
periodic 180◦ periodic pattern. This demonstrates that the frequency variation is mainly
linear. The loss of correlation is substantial for A’3

1 (γfreq = 38%) and on the same order of
magnitude as already observed for E’(TO) (γfreq = 18%). There is no explanation for this
unusual frequency variation yet. The frequency offsets of these two phonons are two times
lower compared to the Le1 polariton discussed below. This unexpected frequency offset
polarization scan is therefore set aside.

As can be seen in Fig. 5.19 a), the polarization response of the Sp(SiO2) is isotropic, with
significant variations in the frequency. Because of these variations, the fit quality of Eq. 5.3
to the data is unsatisfactory. The autocorrelation displayed in Fig. 5.19 c) shows a quick
drop of autocorrelation followed by a constant value of 0.88 revealing a uniform frequency
variation. The correlation loss is γfreq = 12%. In the previous samples, the frequency shift of
the Sp(SiO2) decreased with increasing the sample dimension. This sample is then probably
too large for this mode to be laterally confined. This explains the observed isotropic response
comparable to the Le1 polariton from the wide GaSe sample presented in Figs. 5.12 and 5.13.

A four-lobed polarization pattern is observed for the Le1 polariton as depicted in Fig. 5.19
a). The maximum frequency offset is 0.5 cm−1, similar to the Le1 from the previous sample.
The larger sample dimensions did not decrease the frequency shift of this polariton. A two-
lobed pattern modulates the polarization response as a slight frequency difference of nearly
0.1 cm−1 is observed between the short and long sample axes. Similarly to the first sample,
the higher frequency shifts are aligned with the sample long axes. The polarization lobes are
well aligned with the sample axes since a deviation angle of 6◦ is observed.

The fit of Eq. 5.3 to the Le1 data provides fit coefficients of C0 = 0.212, C1 = 0.142 and
C2 = 0.646. The C2 coefficient dominates, illustrating the observed symmetric four-lobed
pattern polarization response. The C0 coefficient is one order of magnitude higher than the
previous samples presenting a four-lobed response and denotes a lower polarization anisotropy
contrast. This loss of contrast results from the larger sample dimension, which induces
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weaker lateral confinement effects along the sample axes. The C1 coefficient is lower than of
the Sp(SiO2) of the first sample but 2.5 times higher than that of the second and reveals a
moderate 180◦ periodic pattern modulation.

The autocorrelation is depicted in Fig. 5.19 c). A value ρ(180◦) − ρ(90◦) of 0.067 is ex-
tracted, between values extracted from the Sp(SiO2) frequency autocorrelation of the two
first samples. It further demonstrates the presence of a two-lobed modulation within the
Le1 polarization response. The oscillation amplitude of the autocorrelation is 0.2, and a
total correlation loss of γfreq = 4.6% is extracted. These values are comparable to those
extracted above from polariton modes presenting lateral confinement effects. The Sp(SiO2)
PhP therefore presents evidence of lateral confinement effects despite the much larger sample
dimensions.

Third sample: conclusion

In this sample, the polarization responses show a decrease in measurement quality due to
the excitation time required to record a polarization scan (linear decrease in Raman line
intensity or frequency). This phenomenon can be induced by the degradation of the sample
during the excitation time. In the presented results, the effects are slight. In some cases,
however, it is necessary to redo the entire polarization scan. Nonetheless, the data processing
revealed interesting polarization anisotropy for the Le1 polariton both in the intensity and
frequency scan. This PhP therefore presents evidence of lateral confinement effects and a PhP
propagation length could be estimated to 328 µm. If this result is confirmed, the propagation
length of this PhP is one order of magnitude higher than reported in hBN and MoO3.

Summary

This section presented experimental evidence of PhP lateral confinement effects in rectangular
GaSe samples. Lateral confinement effects are revealed by polarization anisotropy with a 90◦

symmetry that is aligned with the sample axes, either in the intensity or the frequency
polarization response. The mathematical tools presented in Sec. 5.2.1 have proved to be
complementary resources to characterize and quantify the anisotropy within the polarization
scans. Especially, the autocorrelation is powerful in probing the periodicity of a signal, even
in the presence of strong variations. These experimental results enabled a first estimation
of the PhP propagation lengths. Polarization-resolved Raman can therefore probe vertical
confinement effects, and GaSe appears to be a good candidate for the development of PhP
waveguides.
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CHAPTER 6 CONCLUSION

6.1 Contributions

This thesis presents the continuation of a work [24] initiated by Bergeron on the study of
PhPs from GaSe using Raman backscattering.

The first contribution of this work is the development of a FEM model in order to compute
PhP field maps in a 2D geometry. It enabled a better understanding of the origin of the
surface polariton modes splitting, either in a symmetric or an asymmetric waveguide. Given
a PhP frequency reported from a Raman spectra, this model can compute the associated
polariton field and its theoretical wavevector. This wavevector can then be compared with
the range of wavevectors probed within the numerical aperture of the instrumentation. Un-
fortunately, the lateral degree of freedom could not be exploited to compute laterally guided
PhPs because of the problems encountered during the development of this model.

The second contribution is the measurement of the polariton dispersion relation as a function
of GaSe sample thicknesses. Five samples with a thickness between 201 nm and 12 µm were
measured. The expected dispersion curve flattening with decreasing sample thickness was
observed experimentally. Moreover, only one surface mode was usually reported in the spec-
tra. Here, the coincident measurement of the two surface modes is reported along with their
dispersion. Then, a group velocity of 0.014c could be extracted for the Le1 polariton thanks
to the good quality of its measured dispersion curve. This value is one order magnitude
higher than the lower reported in the literature, which reveal that the Le1 PhP from GaSe
is less dispersive. Finally, confinement factors of approximately 70 and 100 are reported for
the Sp(SiO2) and Le1 polaritons respectively. These values exceed the ones reported in the
literature for hBN monolayers [41] and thin MoO3 [44]. The coupling from the interaction of
such a confined light with a quantum emitter would be highly improved, which makes PhPs
from GaSe very promising for the development of polaritonic devices.

In his previous work, Bergeron computed Raman spectra of PhPs as a function of the sample
thickness [24]. This calculation predicted a decrease of the Sp(SiO2) frequency for samples
below 400 nm. Additionally, the Le1 Raman line should broaden in samples of larger thickness
because of the propagation of higher-order modes. Therefore, the third contribution of this
work is the addition of experimental data to this calculation to corroborate the predicted
sample thickness dependence of the polariton frequencies. 14 samples were measured, which
makes a total of 17 samples with thickness ranging from 30 to 750 nm (3 samples were
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already measured by Bergeron). The reported polariton frequencies are in accordance with
the calculated Raman spectra. Between sample thicknesses of 84 and 380 nm, a frequency
shift of 18.1 ± 0.4 cm−1 (2.24 meV) for the Sp(SiO2) polariton is observed in addition to
a linear variation of ∼ 0.06 cm−1/nm. These data, along with the second contribution of
this work discussed above, demonstrate that PhPs experiences strong vertical confinement
effects which can be studied with Raman scattering. The PhP frequency measured at normal
incidence could be used to estimate the sample thickness between 100 nm and 12 µm.

The fourth contribution of this work concerns experimental evidence of lateral confinement
of PhPs in rectangular GaSe samples. The PhP frequency shifts when the dimension of
the sample is comparable to the polariton propagation length. Polarization-resolve Raman
scattering is utilized and the excitation polarization is rotated to probe the PhP polarization
response along the sample axes. The PhPs intensity and frequency polarization scans even-
tually display a symmetrical four-lobed polarization response, which indicates the presence
of PhP lateral confinement. Moreover, the polarization lobes are mostly aligned with the
sample axes. A maximum frequency shift of 1.2 cm−1 between the polariton propagating
along the long axis of the sample and that propagating along a diagonal of the sample axes is
reported. The propagation length of the measured polaritons can be estimated as the sample
long axis length. A propagation length of up to 328 µm could be approximated, which is one
order of magnitude larger than the ones reported in hBN and MoO3 [31]. This places PhPs
from GaSe as an excellent candidate to develop efficient polariton waveguides.

6.2 future works and conclusion

Despite the exciting results presented in this thesis, using Raman scattering to probe PhP
properties is still a very recent method that needs to be perfected.

First, computational models are essential to give more credit to experimental data. However,
because of the failed attempt on the FEM model in this work, no computational model is
available yet to model lateral confinements of PhPs. This could detriment future publications
in peer-reviewed journals and therefore slow the development of Raman scattering for the
study of PhPs. Therefore, more effort should be dedicated to developing a model capable of
modeling laterally confined PhPs.

Thin GaSe samples are very sensitive to oxidation, so much so that samples are damaged
within a few minutes without precautions [76]. In this work, the samples are enclosed in a
pump cryostat, limiting the oxidation reactions during measurements. However, the samples
were fabricated in ambient air. Residual air humidity could infiltrate the sample and initiate
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oxidation reactions over a certain amount of time. Therefore, the exfoliation process should
be performed under a controlled environment to increase the quality of the samples. This is
why a recently purchased glove box will benefit future works.

Then, the actual resolution of the Raman instrumentation can prevent the observation of
small PhP frequency shifts. The frequency anisotropy usually observed is around 1 cm−1

and less, at the limit of the instrumentation resolution. The spectrometer grating will be
upgraded to multiply the frequency resolution by two. Therefore, the quality of the Raman
data will improve and smaller PhP frequency shifts will be accessible.

Finally, there needs to be more available data on the lateral confinement of PhPs. Moreover,
these data are hardly comparable because the exfoliation process cannot control the thickness
of the GaSe samples. Therefore, a well-defined exfoliation process should be considered to
increase the chances of obtaining samples of comparable thickness. Then, experimental data
should be accumulated so lateral confinement of PhPs can be characterized as a function of
the lateral sample dimension. After that, vertical and lateral confinement could be combined
to study 1D PhPs.

Combined with the previous work led by Bergeron in Ref. [24], this work confirmed and
extended the ability of Raman scattering in studying PhPs from thin GaSe crystals. Similarly
to the s-SNOM technique, Raman scattering can measure the dispersion of PhPs along with
their properties, such as their confinement factor, group velocity, and propagation length.
Excellent properties of PhP from GaSe were extracted, eventually surpassing the state-of-
the-art. GaSe is, therefore, a serious candidate in the development of phonon-polaritonics in
the future.
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APPENDIX

E ′(12) A′′
2(12) E ′′(11,2) A′

1(11,2) E ′′(21,2) E ′(21,2) A′′
2(21,2) A′

1(21,2)

19.5 cm−1 37.0 cm−1 60.1 cm−1 134.2 cm−1 210.4 cm−1 TO:213.5 cm−1

LO:253.3 cm−1
TO:236.5 cm−1

LO:246.1 cm−1 307.6 cm−1

Raman
Infrared Infrared Raman Raman Raman Raman

Infrared Infrared Raman

- - x̄(yz)x
ȳ(xz)y

x̄(yy)x
x̄(zz)x
ȳ(xx)y
ȳ(zz)y
z̄(xx)z
z̄(yy)z

x̄(yz)x
ȳ(xz)y

ȳ(xx)y [LO]
x̄(yy)x [TO]
z̄(xx)z [TO]
z̄(yy)z [TO]

-

x̄(yy)x
x̄(zz)x
ȳ(xx)y
ȳ(zz)y
z̄(xx)z
z̄(yy)z

Table S1 Normal modes of vibration of GaSe. From top to bottom for each mode are the
representation of the mode (R(Na,b), N denotes for the occurrence number of the mode of
representation R, and a, b are the Davydov numbering), atomic displacement in a unit cell
(Davydov replica are omitted for clarity), frequency, mode activity and Raman selection
rules. E ′(12) and E ′′(11,2) modes frequency taken from [65], A2(12) from [82]. Reprinted
with permission from Ref. [24] © 2020 Alaric Bergeron with updated frequency attribution
from the literature review (see Table S2).
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Reference
(frequency in cm−1) [83] [65] [84]* [82] [85] [86]

A
′1
1 134.1 134.3 - 134 134 134.7

E ′′
2 209.7 211.9 - 212 208.7 -

E ′(TO) 213.5 214 211-215 214 213.3 213.5
A′′

2(TO) - - 236-237 237 236 -
A′′

2(LO) - - 245-247 246 247 245.5
E ′(LO) 253.2 252.1 252-255 255 251.5 254.2
A

′4
1 307.8 308 - 309 307.1 308.3

Table S2 Pure phonon frequencies of GaSe in the studied frequency range at room tempera-
ture, gathered from 6 references. *: This reference reports many frequencies summarized in
one table. The values picked are the minimum and maximum reported by this reference.

D3h E 2C3(z) 3C2’ σh(xy) 2S3 3σv

linear
functions,
rotations

quadratic
functions

A′
1 1 1 1 1 1 1 - x2 + y2, z2

A′
2 1 1 -1 1 1 -1 Rz -

E ′ 2 -1 0 2 -1 0 (x,y) (x2 − y2, xy)
A′′

1 1 1 1 -1 -1 -1 - -
A′′

2 1 1 -1 -1 -1 1 z -
E ′′ 2 -1 0 -2 1 0 (Rx,Ry) (xz,yz)

Table S3 Character table of the D3h space group [64,66].
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