While fasciae have been treated as the virtual ‘cinderella tissue of orthopedic research’ during recent decades, new methodological findings and hypotheses suggest that the bodywide fascial network may play a more important role in musculoskeletal medicine than is commonly assumed. However, in the literature there is great diversity as to which tissues are to be included under the term ‘fascia’ – be it the superficial fascia, the endomysium, perineurium, visceral membranes, aponeuroses, retinaculae or joint/organ capsules. Following the proposed comprehensive terminology of the 1st Fascia Research Congress, this brief review considers all collagenous connective tissues as ‘fascial tissues’ whose morphology is dominantly shaped by tensional loading and which can be seen to be part of an interconnected tensional network throughout the whole body (Findley & Schleip 2007). While morphological differences between aponeuroses and lattice-like or irregular fasciae can still be properly described with this terminology, it allows seeing specific tissue – e.g. septae, capsules and ligaments – as local adaptations of this ubiquitous network based on specific loading histories.

What are the biomechanical functions of this fascial network, and what role do they play in musculoskeletal dysfunctions? This brief literature review will highlight the load-bearing function of different fascial tissues and also their tendency to microtearing during physiological or excessive loading.

It will review histological studies indicating the proprioceptive as well as nociceptive innervation of fascia. Finally the potential role of injury, inflammation and/or neural sensitization of the posterior layer of the human lumbar fascia in nonspecific low back pain will be explored.